Back to Search Start Over

Accumulation and nuclear import of HIF1 alpha during high and low oxygen concentration in skeletal muscle cells in primary culture

Authors :
Nina Hanke
Renate Scheibe
Gerolf Gros
Hans-Peter Kubis
Source :
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1745(2):187-195
Publication Year :
2005
Publisher :
Elsevier BV, 2005.

Abstract

The hypoxia-inducible-factor-1 (HIF1) mediates the transcriptional upregulation of several target genes during hypoxia. HIF1 itself is known to be regulated essentially by ubiquitinylation and proteolytic degradation of the subunit HIF1alpha of the dimeric transcription factor HIF1. In contrast to other tissues, skeletal muscle expresses high amounts of HIF1alpha in normoxia as well as in hypoxia. In view of this, we aimed to investigate HIF1alpha accumulation and subcellular localization as well as the transcriptional activity of the HIF1alpha-regulated gene of glyceraldehyde dehydrogenase (GAPDH) in skeletal muscle cells exposed to low oxygen concentration (3% O2), normoxia (20% O2) or high oxygen concentration (42% O2). Immunofluorescence analysis reveals that under normoxic and high oxygen conditions, significant amounts of HIF1alpha can be found exclusively in the cytoplasm of the myotubes. Muscle cells treated with CoCl2, a known inhibitor of HIF1alpha degradation, show even higher levels of HIF1alpha, again exclusively in the cytoplasm. Under conditions of low oxygen, HIF1alpha in controls as well as in CoCl2-treated cells is found in the nuclei. CdCl2 inhibits nuclear import of HIF1alpha at low oxygen concentration and leads to a transcriptional downregulation of the marker enzyme of anaerobic glycolysis GAPDH. Immunoprecipitation with anti-HIF1alpha antibody co-precipitates HSP90 in an oxygen-dependent manner, more at high pO2 than at low pO2. Cadmium-treated samples also show high amounts of co-immunoprecipitated HSP90, independent of oxygen concentration. We conclude that in skeletal muscle cells, HIF1alpha, in contrast to other tissues, may, in addition to its regulation by degradation, also be regulated by binding to HSP90 and subsequent inhibition of its import into the nuclei.

Details

ISSN :
01674889
Volume :
1745
Issue :
2
Database :
OpenAIRE
Journal :
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Accession number :
edsair.doi.dedup.....51ce16df3c65d7eb9f5708ed32203abf
Full Text :
https://doi.org/10.1016/j.bbamcr.2005.05.007