Back to Search Start Over

Confusing Head-On Collisions with Precessing Intermediate-Mass Binary Black Hole Mergers

Authors :
Nicolas Sanchis-Gual
Alejandro Torres-Forné
José A. Font
Juan Calderón Bustillo
Source :
Physical Review Letters, Phys. Rev. Lett
Publication Year :
2021
Publisher :
American Physical Society (APS), 2021.

Abstract

We report a degeneracy between the gravitational-wave signals from quasi-circular precessing black-hole mergers and those from extremely eccentric mergers, namely head-on collisions. Performing model selection on numerically simulated signals of head-on collisions using models for quasi-circular binaries we find that, for signal-to-noise ratios of 15 and 25, typical of Advanced LIGO observations, head-on mergers with respective total masses of $M\in (125,300)M_\odot$ and $M\in (200,440)M_\odot$ would be identified as precessing quasi-circular intermediate-mass black hole binaries, located at a much larger distance. Ruling out the head-on scenario would require to perform model selection using currently nonexistent waveform models for head-on collisions, together with the application of astrophysically motivated priors on the (rare) occurrence of those events. We show that in situations where standard parameter inference of compact binaries may report component masses inside (outside) the pair-instability supernova gap, the true object may be a head-on merger with masses outside (inside) this gap. We briefly discuss the potential implications of these findings for the recent gravitational-wave detection GW190521, which we analyse in detail in [Phys. Rev. Lett. 126, 081101].<br />10 pages, 9 Figures. Version accepted in Phys. Rev. Lett. Includes Supplementary Material

Details

ISSN :
10797114 and 00319007
Volume :
126
Database :
OpenAIRE
Journal :
Physical Review Letters
Accession number :
edsair.doi.dedup.....51a01e1692f36b62494f4c6ca819f807
Full Text :
https://doi.org/10.1103/physrevlett.126.201101