Back to Search
Start Over
Using inconsistency measures for estimating reliability
- Source :
- International Journal of Approximate Reasoning, International Journal of Approximate Reasoning, Elsevier, 2016, p. 1-17. ⟨10.1016/j.ijar.2016.10.004⟩
- Publication Year :
- 2017
- Publisher :
- Elsevier BV, 2017.
-
Abstract
- International audience; Any decision taken by an agent requires some knowledge of its environment. Communication with other agents is a key issue for assessing the overall quality of its own knowledge. This assessment is a challenge itself as the agent may receive information from unknown agents. The aim of this paper is to propose a framework for assessing the reliability of unknown agents based on communication. We assume that information is represented through logical statements and logical inconsistency is the underlying notion of reliability assessment. In our context, assessing consists of ranking the agents and representing reliability through a total preorder.The overall communication set is first evaluated with the help of inconsistency measures. Next, the measures are used for assessing the contribution of each agent to the overall inconsistency of the communication set. After stating the postulates specifying the expected properties of the reliability preorder, we show through a representation theorem how these postulates and the contribution of the agent are interwoven. We also detail how the properties of the inconsistency measures influence the properties of the contribution assessment. Finally we describe how to aggregate different reliability preorders, each of them may be based on different inconsistency measures.; Cet article présente une méthode pour calculer la fiabilité relative de sources d'informations. En se basant sur les degrés d'inconsistance des informations rapportées par les agents, on définit la contribution de chaque agent dans l'inconsistance. Après avoir listé des postulats spécifiant les propriétés attendues d'un pré-ordre de fiabilité, on établit un théorème de représentation qui relie les postulats à cette fonction de contribution. Enfin, on décrit comment agréger différents pré-ordres de fiabilité.
- Subjects :
- Preferences elicitation
media_common.quotation_subject
Context (language use)
02 engineering and technology
Inconsistency
computer.software_genre
Theoretical Computer Science
03 medical and health sciences
0302 clinical medicine
Artificial Intelligence
LOGIC
0202 electrical engineering, electronic engineering, information engineering
Quality (business)
[INFO.INFO-HC]Computer Science [cs]/Human-Computer Interaction [cs.HC]
030212 general & internal medicine
Set (psychology)
Reliability (statistics)
media_common
Mathematics
Logique en informatique
Representation theorem
Applied Mathematics
Preorder
Informatique et langage
Intelligence artificielle
Apprentissage
INCONSISTENCY
INFORMATIONS SOURCES
Risk analysis (engineering)
Ranking
Logic - Reliability assessment
RELIABILITY
Key (cryptography)
020201 artificial intelligence & image processing
Data mining
computer
Software
Subjects
Details
- ISSN :
- 0888613X
- Volume :
- 89
- Database :
- OpenAIRE
- Journal :
- International Journal of Approximate Reasoning
- Accession number :
- edsair.doi.dedup.....519c47888912c8147175e78ad0ced2b4
- Full Text :
- https://doi.org/10.1016/j.ijar.2016.10.004