Back to Search
Start Over
Electric Field-Assisted Positioning of Neurons on Pt Microelectrode Arrays
- Source :
- Scopus-Elsevier
- Publication Year :
- 2003
- Publisher :
- Springer Science and Business Media LLC, 2003.
-
Abstract
- Characterization of electrical activity of individual neurons is the fundamental step in understanding the functioning of the nervous system. Single cell electrical activity at various stages of cell development is essential to accurately determine in in-vivo conditions the position of a cell based on the procured electrical activity. Understanding memory formation and development translates to changes in the electrical activity of individual neurons. Hence, there is an enormous need to develop novel ways for isolating and positioning individual neurons over single recording sites. To this end, we used a 3x3 multiple microelectrode array system to spatially arrange neurons by applying a gradient AC field. We characterized the electric field distribution inside our test platform by using two dimensiona l finite element modeling (FEM) and determined the location of neurons over the electrode array. Dielectrophoretic AC fields were utilized to separate the neurons from the glial cells and to position the neurons over the electrodes. The neurons were obtained from 0-2-day-old rat (Sprague-Dawley) pups. The technique of using electric fields to achieve single neuron patterning has implications in neural engineering, elucidating a new and simpler method to develop and study neuronal activity as compared to conventional microelectrode array techniques.
Details
- ISSN :
- 19464274 and 02729172
- Volume :
- 773
- Database :
- OpenAIRE
- Journal :
- MRS Proceedings
- Accession number :
- edsair.doi.dedup.....5192aa62f1a657fc0a2f07bda670c2b4
- Full Text :
- https://doi.org/10.1557/proc-773-n4.6