Back to Search Start Over

Surfactant-free synthesis of CdS nanorods for efficient reduction of carcinogenic Cr(VI)

Authors :
Ullah, Haseeb
Balkan, Timuçin
Butler, Ian S.
Kaya, Sarp
Rehman, Zia ur
Publication Year :
2021
Publisher :
Taylor & Francis, 2021.

Abstract

Hexavalent chromium, Cr(VI), is a toxic, mutagenic and carcinogenic species. We report here the semiconductor-based, photocatalytic reduction of Cr(VI) to trivalent chromium, Cr(III), using CdS nanorods (NRs) as the photocatalyst under visible light illumination. The CdS NRs were synthesized by a facile and scalable solvothermal method in which ethylenediamine acts as solvent and morphology controller. The CdS NRs produced were studied by PXRD, Raman, FESEM, EDX, XPS, PL, UV-visible DRS and BET techniques in order to investigate their structural, morphological and optical properties, as well as their porosity. The photoreduction of Cr(VI) to Cr(III) under visible light illumination was performed under a variety of conditions, i.e., varying the irradiation time, pH, substrate concentration, and the amount of photocatalyst. The maximum photoreduction of Cr(VI) to Cr(III) (99%) was achieved using 60 min of irradiation under acidic conditions (pH 4). The excellent photoreduction ability of the CdS NRs can be attributed to their rod-like structure together with their small particle size, large surface area, and clean surfaces. These properties enhanced separation of the photo-generated electron-hole pairs, which was confirmed by the XRD, BET, and PL measurements. In addition, the results of a kinetic study indicated that the photoreduction of Cr(VI) to Cr(III) follows a pseudo-first-order kinetic model. A possible mechanism for the photocatalytic reduction of Cr(VI) to Cr(III) is also proposed in this paper.

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....5191ff6251200db966b8a61f5b4e33f2
Full Text :
https://doi.org/10.6084/m9.figshare.14717137