Back to Search Start Over

An FPT 2-Approximation for Tree-Cut Decomposition

Authors :
Ignasi Sau
Dimitrios M. Thilikos
Eun Jung Kim
Sang-il Oum
Christophe Paul
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE)
Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Department of Mathematical Sciences, KAIST
KAIST
Algorithmes, Graphes et Combinatoire (ALGCO)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Department of Mathematics [Athens]
National and Kapodistrian University of Athens (NKUA)
LIRMM
Source :
Algorithmica, Algorithmica, Springer Verlag, 2018, 80 (1), pp.116-135. ⟨10.1007/s00453-016-0245-5⟩, 13th International Workshop on Approximation and Online Algorithms, WAOA: Workshop on Approximation and Online Algorithms, WAOA: Workshop on Approximation and Online Algorithms, Sep 2015, Patras, Greece. pp.35-46, ⟨10.1007/978-3-319-28684-6_4⟩, HAL, [Research Report] LIRMM. 2015, Approximation and Online Algorithms ISBN: 9783319286839, WAOA
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

The tree-cut width of a graph is a graph parameter defined by Wollan [J. Comb. Theory, Ser. B, 110:47-66, 2015] with the help of tree-cut decompositions. In certain cases, tree-cut width appears to be more adequate than treewidth as an invariant that, when bounded, can accelerate the resolution of intractable problems. While designing algorithms for problems with bounded tree-cut width, it is important to have a parametrically tractable way to compute the exact value of this parameter or, at least, some constant approximation of it. In this paper we give a parameterized 2-approximation algorithm for the computation of tree-cut width; for an input $n$-vertex graph $G$ and an integer $w$, our algorithm either confirms that the tree-cut width of $G$ is more than $w$ or returns a tree-cut decomposition of $G$ certifying that its tree-cut width is at most $2w$, in time $2^{O(w^2\log w)} \cdot n^2$. Prior to this work, no constructive parameterized algorithms, even approximated ones, existed for computing the tree-cut width of a graph. As a consequence of the Graph Minors series by Robertson and Seymour, only the existence of a decision algorithm was known.<br />17 pages, 3 figures

Details

Language :
English
ISBN :
978-3-319-28683-9
ISSN :
01784617 and 14320541
ISBNs :
9783319286839
Database :
OpenAIRE
Journal :
Algorithmica, Algorithmica, Springer Verlag, 2018, 80 (1), pp.116-135. ⟨10.1007/s00453-016-0245-5⟩, 13th International Workshop on Approximation and Online Algorithms, WAOA: Workshop on Approximation and Online Algorithms, WAOA: Workshop on Approximation and Online Algorithms, Sep 2015, Patras, Greece. pp.35-46, ⟨10.1007/978-3-319-28684-6_4⟩, HAL, [Research Report] LIRMM. 2015, Approximation and Online Algorithms ISBN: 9783319286839, WAOA
Accession number :
edsair.doi.dedup.....5189c90154f525f57aae2b10cab64c6b
Full Text :
https://doi.org/10.1007/s00453-016-0245-5⟩