Back to Search Start Over

Keystone Taxa and Predictive Functional Analysis of Sphagnum palustre Tank Microbiomes in Erxianyan Peatland, Central China

Authors :
Baiying Man
Xing Xiang
Junzhong Zhang
Gang Cheng
Chao Zhang
Yang Luo
Yangmin Qin
Source :
Biology; Volume 11; Issue 10; Pages: 1436
Publication Year :
2022
Publisher :
Multidisciplinary Digital Publishing Institute, 2022.

Abstract

Sphagnum is a fundamental ecosystem of engineers, including more than 300 species around the world. These species host diverse microbes, either endosymbiotic or ectosymbiotic, and are key to carbon sequestration in peatland ecosystems. However, the linkages between different types of Sphagnum and the diversity and ecological functions of Sphagnum-associated microbiomes are poorly known, and so are their joint responses to ecological functions. Here, we systematically investigated endophytes in Sphagnum palustre via next-generation sequencing (NGS) techniques in the Erxianyan peatland, central China. The total bacterial microbiome was classified into 38 phyla and 55 classes, 122 orders and 490 genera. The top 8 phyla of Proteobacteria (33.69%), Firmicutes (11.94%), Bacteroidetes (9.42%), Actinobacteria (6.53%), Planctomycetes (6.37%), Gemmatimonadetes (3.05%), Acidobacteria (5.59%) and Cyanobacteria (1.71%) occupied 78.31% of total OTUs. The core microbiome of S. palustre was mainly distributed mainly in 7 phyla, 9 classes, 15 orders, 22 families and 43 known genera. There were many differences in core microbiomes compared to those in the common higher plants. We further demonstrate that the abundant functional groups have a substantial potential for nitrogen fixation, carbon cycle, nitrate metabolism, sulfate respiration and chitinolysis. These results indicate that potential ecological function of Sphagnum palustre in peatlands is partially rooted in its microbiomes, and that incorporating into functional groups of Sphagnum-associated microbiomes can promote mechanistic understanding of Sphagnum ecology in subalpine peatlands.

Details

Language :
English
ISSN :
20797737
Database :
OpenAIRE
Journal :
Biology; Volume 11; Issue 10; Pages: 1436
Accession number :
edsair.doi.dedup.....51868c5ed9e44d4beb9fdb7080e8c621
Full Text :
https://doi.org/10.3390/biology11101436