Back to Search
Start Over
A functorial extension of the Magnus representation to the category of three-dimensional cobordisms
- Source :
- Fundamenta Mathematicae, Fundamenta Mathematicae, Instytut Matematyczny, Polskiej Akademii Nauk, 2018, 240 (3), pp.221-263. ⟨10.4064/fm293-1-2017⟩, Fundamenta Mathematicae, Instytut Matematyczny, Polskiej Akademii Nauk, 2018, 240 (3), pp.221-263. 〈10.4064/fm293-1-2017〉
- Publication Year :
- 2018
- Publisher :
- HAL CCSD, 2018.
-
Abstract
- Let $R$ be an integral domain and $G$ be a subgroup of its group of units. We consider the category $\mathbf{\mathsf{Cob}}_G$ of 3-dimensional cobordisms between oriented surfaces with connected boundary, equipped with a representation of their fundamental group in $G$. Under some mild conditions on $R$, we construct a monoidal functor from $\mathbf{\mathsf{Cob}}_G$ to the category $\mathbf{\mathsf{pLagr}}_R$ consisting of "pointed Lagrangian relations" between skew-Hermitian $R$-modules. We call it the "Magnus functor" since it contains the Magnus representation of mapping class groups as a special case. Our construction is inspired from the work of Cimasoni and Turaev on the extension of the Burau representation of braid groups to the category of tangles. It can also be regarded as a $G$-equivariant version of a TQFT-like functor that has been described by Donaldson. The study and computation of the Magnus functor is carried out using classical techniques of low-dimensional topology. When $G$ is a free abelian group and $R = Z[G]$ is the group ring of $G$, we relate the Magnus functor to the "Alexander functor" (which has been introduced in a prior work using Alexander-type invariants), and we deduce a factorization formula for the latter.<br />36 pages; very minor changes
- Subjects :
- [ MATH ] Mathematics [math]
[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]
Pure mathematics
Fundamental group
Braid group
01 natural sciences
Alexander polynomial
Mathematics - Geometric Topology
Mathematics::Category Theory
[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]
Mapping class group
FOS: Mathematics
0101 mathematics
[MATH]Mathematics [math]
3-manifold
Monoidal functor
Mathematics
Algebra and Number Theory
Functor
Burau representation
Topological quantum field theory
010102 general mathematics
Magnus representation
Geometric Topology (math.GT)
57M27, 57M10
16. Peace & justice
Mathematics::Geometric Topology
TQFT
Cobordism
Free abelian group
MSC: Primary 57M27
Secondary 57M10
Group ring
Subjects
Details
- Language :
- English
- ISSN :
- 00162736 and 17306329
- Database :
- OpenAIRE
- Journal :
- Fundamenta Mathematicae, Fundamenta Mathematicae, Instytut Matematyczny, Polskiej Akademii Nauk, 2018, 240 (3), pp.221-263. ⟨10.4064/fm293-1-2017⟩, Fundamenta Mathematicae, Instytut Matematyczny, Polskiej Akademii Nauk, 2018, 240 (3), pp.221-263. 〈10.4064/fm293-1-2017〉
- Accession number :
- edsair.doi.dedup.....515d4e667f663d35caedc7c807dc5c2a
- Full Text :
- https://doi.org/10.4064/fm293-1-2017⟩