Back to Search
Start Over
β-Adrenergic Receptor Activation Promotes Process Outgrowth in an Embryonic Rat Basal Forebrain Cell Line and in Primary Neurons
- Source :
- European Journal of Neuroscience. 8:2042-2055
- Publication Year :
- 1996
- Publisher :
- Wiley, 1996.
-
Abstract
- A clonal cell line, AS583-8.E4.22, from the embryonic day 15 rat basal forebrain was established using retrovirus-mediated transduction of a temperature-sensitive mutant of the simian virus 40 (SV40) large tumour antigen. The cell line expresses cytoskeletal and neurotransmitter features indicative of neuronal commitment. In response to agents that increase intracellular cAMP, including forskolin and catecholamines, the cell line exhibits rapid process outgrowth and growth cone formation that does not require new gene expression or protein synthesis. The neurite outgrowth induced by catecholamines is mediated by beta 2-adrenergic receptors and is characterized by a rapid, reversible redistribution of filamentous actin. Neurons from primary cultures of embryonic day 15 basal forebrain were also found to respond to beta-adrenergic receptor agonists by enhancing growth cone formation. These results suggest that catecholamines provide cues that induce cytoskeletal rearrangements leading to neuronal process outgrowth and growth cone formation in the developing basal forebrain and possibly other neuronal progenitor cell populations. The neuronal basal forebrain cell line provides an ideal model to study the signalling mechanisms underlying the catecholamine-induced process outgrowth.
- Subjects :
- Neurite
Antigens, Polyomavirus Transforming
Gestational Age
Biology
Filamentous actin
Cell Line
Catecholamines
Prosencephalon
Transduction, Genetic
Cyclic AMP
Animals
Cholinergic neuron
Progenitor cell
Growth cone
Receptor
Cellular Senescence
Neurons
Basal forebrain
General Neuroscience
Adrenergic beta-Agonists
Embryo, Mammalian
Rats
Rats, Inbred ACI
Cell biology
Cytoskeletal Proteins
Mutation
Neuroscience
Intracellular
Subjects
Details
- ISSN :
- 14609568 and 0953816X
- Volume :
- 8
- Database :
- OpenAIRE
- Journal :
- European Journal of Neuroscience
- Accession number :
- edsair.doi.dedup.....5137b4bab28e7caba2efa7e53429255c
- Full Text :
- https://doi.org/10.1111/j.1460-9568.1996.tb00724.x