Back to Search Start Over

Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N2O emissions

Authors :
Fiona Ehrhardt
Mark A. Liebig
Raphaël Martin
Jordi Doltra
Russel McAuliffe
Val Snow
Joël Léonard
Andrew D. Moore
Stephanie K. Jones
Lutz Merbold
Pete Smith
Lianhai Wu
Elizabeth A. Meier
Paul C. D. Newton
Arti Bhatia
Gianni Bellocchi
Massimiliano De Antoni Migliorati
Miko U. F. Kirschbaum
Ward Smith
Brian Grant
Renáta Sándor
Joanna Sharp
Lorenzo Brilli
Nuala Fitton
Jean-François Soussana
Elizabeth Pattey
Luca Doro
Katja Klumpp
Christopher D. Dorich
Bruno Basso
Raia Silvia Massad
Sylvie Recous
Patricia Laville
Qing Zhang
Matthew T. Harrison
Sandro José Giacomini
Susanne Rolinski
Mark Lieffering
Peter Grace
Vasileios Myrgiotis
Collège de Direction (CODIR)
Institut National de la Recherche Agronomique (INRA)
Unité Mixte de Recherche sur l'Ecosystème Prairial - UMR (UREP)
Institut National de la Recherche Agronomique (INRA)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)
Queensland University of Technology
Agresearch Ltd
Fractionnement des AgroRessources et Environnement (FARE)
Université de Reims Champagne-Ardenne (URCA)-Institut National de la Recherche Agronomique (INRA)
University of Aberdeen
Michigan State University [East Lansing]
Michigan State University System
Indian Agricultural Research Institute (IARI)
Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI)
Catabrian Agricultural Research and Training Center (CIFA)
Colorado State University [Fort Collins] (CSU)
Università degli Studi di Sassari
Universidade Federal de Santa Maria = Federal University of Santa Maria [Santa Maria, RS, Brazil] (UFSM)
Agriculture and Agri-Food [Ottawa] (AAFC)
Tasmanian Institute of Agriculture
Scotland's Rural College (SRUC)
Manaaki Whenua – Landcare Research [Lincoln]
Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS)
Institut National de la Recherche Agronomique (INRA)-AgroParisTech
Agroressources et Impacts environnementaux (AgroImpact)
USDA-ARS : Agricultural Research Service
Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO)
Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)
Potsdam Institute for Climate Impact Research (PIK)
New Zealand Institute for Crop and Food Research
Partenaires INRAE
Rothamsted Research
Chinese Academy of Sciences (CAS)
ANR
European Project: 277610,EC:FP7:KBBE,FP7-JPROG-2011-RTD,FACCE CSA(2011)
Queensland University of Technology [Brisbane] (QUT)
Università degli Studi di Firenze = University of Florence (UniFI)
Università degli Studi di Sassari = University of Sassari [Sassari] (UNISS)
Agriculture and Agri-Food (AAFC)
Biotechnology and Biological Sciences Research Council (BBSRC)
Universidade Federal de Santa Maria (UFSM)
Source :
Global Change Biology, Global Change Biology, Wiley, 2018, 24 (2), pp.e603-e616. ⟨10.1111/gcb.13965⟩, Global Change Biology, 24 (2), Global Change Biology, 2018, 24 (2), pp.e603-e616. ⟨10.1111/gcb.13965⟩
Publication Year :
2018
Publisher :
Wiley-Blackwell, 2018.

Abstract

International audience; Simulation models are extensively used to predict agricultural productivity and greenhouse gas emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multi-species agricultural contexts. We report an international model comparison and benchmarking exercise, showing the potential of multi-model ensembles to predict productivity and nitrous oxide (N2O)emissions for wheat, maize, rice and temperate grasslands. Using a multi-stage modelling protocol, from blind simulations (stage 1) to partial (stages 2–4) and full calibration (stage 5), 24 process-based biogeochemical models were assessed individually or as an ensemble against long-term experimental data from four temperate grassland and five arable crop rotation sites spanning four continents.Comparisons were performed by reference to the experimental uncertainties of observed yields and N2O emissions. Results showed that across sites and crop/grassland types, 23%–40% of the uncalibrated individual models were within two standard deviations (SD) of observed yields, while 42 (rice) to 96% (grasslands) of the models were within 1SD of observed N2O emissions. At stage 1, ensembles formed by the three lowest prediction model errors predicted both yields and N2O emissions within experimental uncertainties for 44% and 33% of the crop and grass-land growth cycles, respectively. Partial model calibration (stages 2–4) markedly reduced prediction errors of the full model ensemble E-median for crop grain yields(from 36% at stage 1 down to 4% on average) and grassland productivity (from 44%to 27%) and to a lesser and more variable extent for N2O emissions. Yield-scaled N2O emissions (N2O emissions divided by crop yields) were ranked accurately by three-model ensembles across crop species and field sites. The potential of using process-based model ensembles to predict jointly productivity and N2O emissions at field scale is discussed.

Details

ISSN :
13541013 and 13652486
Database :
OpenAIRE
Journal :
Global Change Biology, Global Change Biology, Wiley, 2018, 24 (2), pp.e603-e616. ⟨10.1111/gcb.13965⟩, Global Change Biology, 24 (2), Global Change Biology, 2018, 24 (2), pp.e603-e616. ⟨10.1111/gcb.13965⟩
Accession number :
edsair.doi.dedup.....510dbcd19d15faa2b0f6279fc61e6dd6
Full Text :
https://doi.org/10.1111/gcb.13965⟩