Back to Search Start Over

2-Arachidonoylglycerol Modulates CXCL12-Mediated Chemotaxis in Mantle Cell Lymphoma and Chronic Lymphocytic Leukemia

Authors :
Magali Merrien
Agata M. Wasik
Christopher M. Melén
Mohammad Hamdy Abdelrazak Morsy
Kristina Sonnevi
Henna-Riikka Junlén
Birger Christensson
Björn E. Wahlin
Birgitta Sander
Source :
Cancers, Volume 15, Issue 5, Pages: 1585
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

To survive chemotherapy, lymphoma cells can relocate to protective niches where they receive support from the non-malignant cells. The biolipid 2-arachidonoylglycerol (2-AG), an agonist for the cannabinoid receptors CB1 and CB2, is released by stromal cells in the bone marrow. To investigate the role of 2-AG in lymphoma, we analyzed the chemotactic response of primary B-cell lymphoma cells enriched from peripheral blood of twenty-two chronic lymphocytic leukemia (CLL) and five mantle cell lymphoma (MCL) patients towards 2-AG alone and/or to the chemokine CXCL12. The expression of cannabinoid receptors was quantified using qPCR and the protein levels visualized by immunofluorescence and Western blot. Surface expression of CXCR4, the main cognate receptor to CXCL12, was analyzed by flow cytometry. Phosphorylation of key downstream signaling pathways activated by 2-AG and CXCL12 were measured by Western blot in three MCL cell lines and two primary CLL samples. We report that 2-AG induces chemotaxis in 80% of the primary samples, as well as 2/3 MCL cell lines. 2-AG induced in a dose-dependent manner, the migration of JeKo-1 cell line via CB1 and CB2. 2-AG affected the CXCL12-mediated chemotaxis without impacting the expression or internalization of CXCR4. We further show that 2-AG modulated p38 and p44/42 MAPK activation. Our results suggest that 2-AG has a previously unrecognized role in the mobilization of lymphoma cells by effecting the CXCL12-induced migration and the CXCR4 signaling pathways, however, with different effects in MCL compared to CLL.

Details

ISSN :
20726694
Volume :
15
Database :
OpenAIRE
Journal :
Cancers
Accession number :
edsair.doi.dedup.....50f8a831dba117848464edcfd7bae862
Full Text :
https://doi.org/10.3390/cancers15051585