Back to Search Start Over

Effects of extracellular Mg 2+ on transepithelial capacitance and Na + transport in A6 cells under different osmotic conditions

Authors :
Willy Van Driessche
Danny Jans
Dana Cucu
Jeannine Simaels
Wolfgang Zeiske
Source :
Pfl�gers Archiv European Journal of Physiology. 439:504-512
Publication Year :
2000
Publisher :
Springer Science and Business Media LLC, 2000.

Abstract

The electrophysiological characteristics of monolayers of cultured renal epithelial A6 cells were studied under short-circuit conditions. Replacing basolateral isosmotic (260 mOsm/kg H2O) media by hyposmotic (140 mOsm/kg H2O) solutions transiently increased the transepithelial capacitance (C(T)) by 57.3+/-2.3% after 16 min. The transepithelial Na+ current (I(Na)) increased concomitantly from 4.2+/-0.7 to 26.1+/-2.6 microA/cm2 with a time course that was noticeably slower, reaching its maximum after 60 min of hypotonicity. The transepithelial conductance (G(T)) increased synchronously with I(Na). Analysis of blocker-induced noise in I(Na), using the amiloride analogue 6-chloro-3,5-diaminopyrazine-2-carboxamide (CDPC), showed that the hypotonic shock increased Na+ channel density (N(T)) at the apical border. The presence of 10 mM Mg2+ on both sides of the epithelium suppressed the hypotonicity-induced C(T) increase to 14.3+/-0.5%, whereas the I(Na) increase was even larger than without Mg2+. Both effects of Mg2+ were located at an extracellular, basolateral site, because apical administration was without effect, whereas the acute basolateral addition of Mg2+ at the moment of the hypotonic shock was sufficient. Interaction between Mg2+ and Ca2+ influenced the behaviour of C(T). At constant osmolality (200 mOsm/kg H2O) 10 mM Mg2+ increased I(Na), leaving C(T) unaffected, whereas 10 mM Ca2+ stimulated both I(Na) and CT. In the presence of 1 mM Mg2+, however, the Ca(2+)-induced CT increase was abolished. The failure of CT to increase during stimulation of I(Na) by Mg2+ suggests that the divalent cation activates pre-existing channels in the apical membrane. Noise analysis showed that the natriferic effects of Mg2+ were also mediated by an increase in NT. The moderate initial increase in CT in the presence of Mg2+ under hypotonic conditions, occurring in parallel with increases in GT and I(Na), reflects most likely Na+ channel insertion induced by the hypotonic treatment. However, the large, transient, Mg(2+)-sensitive increase in CT, not correlated with increases in GT and I(Na), seems to be unrelated to Na+ channel recruitment.

Details

ISSN :
14322013 and 00316768
Volume :
439
Database :
OpenAIRE
Journal :
Pfl�gers Archiv European Journal of Physiology
Accession number :
edsair.doi.dedup.....50c59bb8eab98cb30903fa610da19d1f