Back to Search Start Over

Early glycolytic reprogramming controls microglial inflammatory activation

Authors :
Renjuan Sun
Long Tai Zheng
Youliang Ke
Rong Zhang
Xuechu Zhen
Xiaohu Zhang
Zhirou Xu
Junjie Cheng
Huicui Yang
Source :
Journal of Neuroinflammation, Vol 18, Iss 1, Pp 1-18 (2021), Journal of Neuroinflammation
Publication Year :
2021
Publisher :
BMC, 2021.

Abstract

Background Microglial activation-mediated neuroinflammation plays an important role in the progression of neurodegenerative diseases. Inflammatory activation of microglial cells is often accompanied by a metabolic switch from oxidative phosphorylation to aerobic glycolysis. However, the roles and molecular mechanisms of glycolysis in microglial activation and neuroinflammation are not yet fully understood. Methods The anti-inflammatory effects and its underlying mechanisms of glycolytic inhibition in vitro were examined in lipopolysaccharide (LPS) activated BV-2 microglial cells or primary microglial cells by enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), Western blot, immunoprecipitation, flow cytometry, and nuclear factor kappa B (NF-κB) luciferase reporter assays. The anti-inflammatory and neuroprotective effects of glycolytic inhibitor, 2-deoxoy-d-glucose (2-DG) in vivo were measured in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-or LPS-induced Parkinson’s disease (PD) models by immunofluorescence staining, behavior tests, and Western blot analysis. Results We found that LPS rapidly increased glycolysis in microglial cells, and glycolysis inhibitors (2-DG and 3-bromopyruvic acid (3-BPA)), siRNA glucose transporter type 1 (Glut-1), and siRNA hexokinase (HK) 2 abolished LPS-induced microglial cell activation. Mechanistic studies demonstrated that glycolysis inhibitors significantly inhibited LPS-induced phosphorylation of mechanistic target of rapamycin (mTOR), an inhibitor of nuclear factor-kappa B kinase subunit beta (IKKβ), and NF-kappa-B inhibitor alpha (IκB-α), degradation of IκBα, nuclear translocation of p65 subunit of NF-κB, and NF-κB transcriptional activity. In addition, 2-DG significantly inhibited LPS-induced acetylation of p65/RelA on lysine 310, which is mediated by NAD-dependent protein deacetylase sirtuin-1 (SIRT1) and is critical for NF-κB activation. A coculture study revealed that 2-DG reduced the cytotoxicity of activated microglia toward MES23.5 dopaminergic neuron cells with no direct protective effect. In an LPS-induced PD model, 2-DG significantly ameliorated neuroinflammation and subsequent tyrosine hydroxylase (TH)-positive cell loss. Furthermore, 2-DG also reduced dopaminergic cell death and microglial activation in the MPTP-induced PD model. Conclusions Collectively, our results suggest that glycolysis is actively involved in microglial activation. Inhibition of glycolysis can ameliorate microglial activation-related neuroinflammatory diseases.

Details

Language :
English
ISSN :
17422094
Volume :
18
Issue :
1
Database :
OpenAIRE
Journal :
Journal of Neuroinflammation
Accession number :
edsair.doi.dedup.....505434db7063b9b96b997e9994ecd8ed