Back to Search
Start Over
EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical processing units
- Source :
- European Journal of Human Genetics
- Publication Year :
- 2010
-
Abstract
- Detection of epistatic interaction between loci has been postulated to provide a more in-depth understanding of the complex biological and biochemical pathways underlying human diseases. Studying the interaction between two loci is the natural progression following traditional and well-established single locus analysis. However, the added costs and time duration required for the computation involved have thus far deterred researchers from pursuing a genome-wide analysis of epistasis. In this paper, we propose a method allowing such analysis to be conducted very rapidly. The method, dubbed EPIBLASTER, is applicable to casecontrol studies and consists of a two-step process in which the difference in Pearson‘s correlation coefficients is computed between controls and cases across all possible SNP pairs as an indication of significant interaction warranting further analysis. For the subset of interactions deemed potentially significant, a second-stage analysis is performed using the likelihood ratio test from the logistic regression to obtain the P-value for the estimated coefficients of the individual effects and the interaction term. The algorithm is implemented using the parallel computational capability of commercially available graphical processing units to greatly reduce the computation time involved. In the current setup and example data sets (211 cases, 222 controls, 299468 SNPs; and 601 cases, 825 controls, 291095 SNPs), this coefficient evaluation stage can be completed in roughly 1 day. Our method allows for exhaustive and rapid detection of significant SNP pair interactions without imposing significant marginal effects of the single loci involved in the pair.
- Subjects :
- Computation
Locus (genetics)
Single-nucleotide polymorphism
Biology
Logistic regression
Polymorphism, Single Nucleotide
Article
Correlation
03 medical and health sciences
0302 clinical medicine
Genetics
Computer Graphics
SNP
Humans
Genetic Predisposition to Disease
Genetics (clinical)
030304 developmental biology
0303 health sciences
business.industry
Pattern recognition
Epistasis, Genetic
Logistic Models
Likelihood-ratio test
Case-Control Studies
Epistasis
Artificial intelligence
business
030217 neurology & neurosurgery
Algorithms
Software
Genome-Wide Association Study
Subjects
Details
- ISSN :
- 14765438
- Volume :
- 19
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- European journal of human genetics : EJHG
- Accession number :
- edsair.doi.dedup.....501714194267ba49e8d3948703528875