Back to Search
Start Over
Land surface modeling over the Dry Chaco: the impact of model structures, and soil, vegetation and land cover parameters
- Source :
- Hydrology and Earth System Sciences, Vol 25, Pp 4099-4125 (2021)
- Publication Year :
- 2021
- Publisher :
- Copernicus Publications, 2021.
-
Abstract
- In this study, we tested the impact of a revised set of soil, vegetation and land cover parameters on the performance of three different state-of-the-art land surface models (LSMs) within the NASA Land Information System (LIS). The impact of this revision was tested over the South American Dry Chaco, an ecoregion characterized by deforestation and forest degradation since the 1980s. Most large-scale LSMs may lack the ability to correctly represent the ongoing deforestation processes in this region, because most LSMs use climatological vegetation indices and static land cover information. The default LIS parameters were revised with (i) improved soil parameters, (ii) satellite-based interannually varying vegetation indices (leaf area index and green vegetation fraction) instead of climatological vegetation indices, and (iii) yearly land cover information instead of static land cover. A relative comparison in terms of water budget components and “efficiency space” for various baseline and revised experiments showed that large regional and long-term differences in the simulated water budget partitioning relate to different LSM structures, whereas smaller local differences resulted from updated soil, vegetation and land cover parameters. Furthermore, the different LSM structures redistributed water differently in response to these parameter updates. A time-series comparison of the simulations to independent satellite-based estimates of evapotranspiration and brightness temperature (Tb) showed that no LSM setup significantly outperformed another for the entire region and that not all LSM simulations improved with updated parameter values. However, the revised soil parameters generally reduced the bias between simulated surface soil moisture and pixel-scale in situ observations and the bias between simulated Tb and regional Soil Moisture Ocean Salinity (SMOS) observations. Our results suggest that the different hydrological responses of various LSMs to vegetation changes may need further attention to gain benefits from vegetation data assimilation.
- Subjects :
- Technology
010504 meteorology & atmospheric sciences
0208 environmental biotechnology
TIME-SERIES
02 engineering and technology
Land cover
Atmospheric sciences
CATCHMENT-BASED APPROACH
01 natural sciences
Environmental technology. Sanitary engineering
TERRESTRIAL WATER STORAGE
HYDRAULIC-PROPERTIES
Data assimilation
Ecoregion
DATA ASSIMILATION
Deforestation
Evapotranspiration
Geography. Anthropology. Recreation
GE1-350
Leaf area index
Geosciences, Multidisciplinary
PHOTOSYNTHETICALLY ACTIVE RADIATION
Water content
TD1-1066
0105 earth and related environmental sciences
Science & Technology
MOISTURE RETRIEVALS
LEAF-AREA INDEX
Geology
Vegetation
020801 environmental engineering
EVAPORATION
Environmental sciences
MODIS
Physical Sciences
Water Resources
Environmental science
Subjects
Details
- Language :
- English
- ISSN :
- 16077938 and 10275606
- Volume :
- 25
- Database :
- OpenAIRE
- Journal :
- Hydrology and Earth System Sciences
- Accession number :
- edsair.doi.dedup.....4ff3306552a3df3e344adf9443cfd7b8