Back to Search
Start Over
Detection of Dental Apical Lesions Using CNNs on Periapical Radiograph
- Source :
- Sensors, Volume 21, Issue 21, Sensors (Basel, Switzerland), Sensors, Vol 21, Iss 7049, p 7049 (2021)
- Publication Year :
- 2021
- Publisher :
- Multidisciplinary Digital Publishing Institute, 2021.
-
Abstract
- Apical lesions, the general term for chronic infectious diseases, are very common dental diseases in modern life, and are caused by various factors. The current prevailing endodontic treatment makes use of X-ray photography taken from patients where the lesion area is marked manually, which is therefore time consuming. Additionally, for some images the significant details might not be recognizable due to the different shooting angles or doses. To make the diagnosis process shorter and efficient, repetitive tasks should be performed automatically to allow the dentists to focus more on the technical and medical diagnosis, such as treatment, tooth cleaning, or medical communication. To realize the automatic diagnosis, this article proposes and establishes a lesion area analysis model based on convolutional neural networks (CNN). For establishing a standardized database for clinical application, the Institutional Review Board (IRB) with application number 202002030B0 has been approved with the database established by dentists who provided the practical clinical data. In this study, the image data is preprocessed by a Gaussian high-pass filter. Then, an iterative thresholding is applied to slice the X-ray image into several individual tooth sample images. The collection of individual tooth images that comprises the image database are used as input into the CNN migration learning model for training. Seventy percent (70%) of the image database is used for training and validating the model while the remaining 30% is used for testing and estimating the accuracy of the model. The practical diagnosis accuracy of the proposed CNN model is 92.5%. The proposed model successfully facilitated the automatic diagnosis of the apical lesion.
- Subjects :
- Computer science
Sample (material)
TP1-1185
Biochemistry
Convolutional neural network
Article
Analytical Chemistry
periapical image
iterative thresholding
Humans
Electrical and Electronic Engineering
Medical diagnosis
Instrumentation
business.industry
apical lesion
Chemical technology
Deep learning
Periapical radiography
biomedical image
deep learning
Pattern recognition
Filter (signal processing)
Atomic and Molecular Physics, and Optics
Radiography
Gaussian high pass filter
Iterative thresholding
Artificial intelligence
Neural Networks, Computer
Focus (optics)
business
Tooth
CNN
Subjects
Details
- Language :
- English
- ISSN :
- 14248220
- Database :
- OpenAIRE
- Journal :
- Sensors
- Accession number :
- edsair.doi.dedup.....4fcc4bb02dbe321b1774c6ff4e9c3229
- Full Text :
- https://doi.org/10.3390/s21217049