Back to Search Start Over

Modeling self-developing biological neural networks

Authors :
Hugues Berry
Olivier Temam
Architectures, Languages and Compilers to Harness the End of Moore Years (ALCHEMY)
Laboratoire de Recherche en Informatique (LRI)
Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
ANR 'JC05_63935', Project ASTICO
Source :
Neurocomputing, Neurocomputing, 2007, 70 (16-18), pp.2723-2734. ⟨10.1016/j.neucom.2006.06.013⟩, Neurocomputing, Elsevier, 2007, 70 (16-18), pp.2723-2734. ⟨10.1016/j.neucom.2006.06.013⟩
Publication Year :
2007
Publisher :
Elsevier BV, 2007.

Abstract

Recent progress in chips-neuron interface suggests real biological neurons as long-term alternatives to silicon transistors. The first step to designing such computing systems is to build an abstract model of self-assembled biological neural networks, much like computer architects manipulate abstract models of transistors. In this article, we propose a model of the structure of biological neural networks. Our model reproduces most of the graph properties exhibited by Caenorhabditis elegans, including its small-world structure and allows generating surrogate networks with realistic biological structure, as would be needed for complex information processing/computing tasks.

Details

ISSN :
09252312
Volume :
70
Database :
OpenAIRE
Journal :
Neurocomputing
Accession number :
edsair.doi.dedup.....4fc022e7a6ac573988272d3e56e41f03
Full Text :
https://doi.org/10.1016/j.neucom.2006.06.013