Back to Search
Start Over
How latex film formation and adhesion at the nanoscale correlate to performance of pressure sensitive adhesives with cellulose nanocrystals
- Source :
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences. 379(2206)
- Publication Year :
- 2021
-
Abstract
- Emulsion polymerized latex-based pressure-sensitive adhesives (PSAs) are more environmentally benign because they are synthesized in water but often underperform compared to their solution polymerized counterparts. Studies have shown a simultaneous improvement in the tack, and peel and shear strength of various acrylic PSAs upon the addition of cellulose nanocrystals (CNCs). This work uses atomic force microscopy (AFM) to examine the role of CNCs in (i) the coalescence of hydrophobic 2-ethyl hexyl acrylate/ n -butyl acrylate/methyl methacrylate (EHA/BA/MMA) latex films and (ii) as adhesion modifiers over multiple length scales. Thin films with varying solids content and CNC loading were prepared by spin coating. AFM revealed that CNCs lowered the solids content threshold for latex particle coalescence during film formation. This improved the cohesive strength of the films, which was directly reflected in the increased shear strength of the EHA/BA/MMA PSAs with increasing CNC loading. Colloidal probe AFM indicated that the nano-adhesion of thicker continuous latex films increased with CNC loading when measured over small contact areas where the effect of surface roughness was negligible. Conversely, the beneficial effects of the CNCs on macroscopic PSA tack and peel strength were outweighed by the effects of increased surface roughness with increasing CNC loading over larger surface areas. This highlights that CNCs can improve both cohesive and adhesive PSA properties; however, the effects are most pronounced when the CNCs interact favourably with the latex polymer and are uniformly dispersed throughout the adhesive film. This article is part of the theme issue ‘Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)’.
- Subjects :
- Materials science
Nanocomposite
General Mathematics
General Engineering
General Physics and Astronomy
Emulsion polymerization
02 engineering and technology
Adhesion
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
0104 chemical sciences
Polymerization
Cellulose nanocrystals
Chemical engineering
Adhesives
Emulsion
Nanoparticles
Adhesive
0210 nano-technology
Cellulose
Nanoscopic scale
Hydrophobic and Hydrophilic Interactions
Subjects
Details
- ISSN :
- 14712962
- Volume :
- 379
- Issue :
- 2206
- Database :
- OpenAIRE
- Journal :
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
- Accession number :
- edsair.doi.dedup.....4fbd7f39ca4ca6afb55e665b7e5a2304