Back to Search Start Over

Cut-and-paste of quadriculated disks and arithmetic properties of the adjacency matrix

Authors :
Nicolau C. Saldanha
Carlos Tomei
Publication Year :
2009

Abstract

We define cut-and-paste, a construction which, given a quadriculated disk obtains a disjoint union of quadriculated disks of smaller total area. We provide two examples of the use of this procedure as a recursive step. Tilings of a disk $\Delta$ receive a parity: we construct a perfect or near-perfect matching of tilings of opposite parities. Let $B_\Delta$ be the black-to-white adjacency matrix: we factor $B_\Delta = L\tilde DU$, where $L$ and $U$ are lower and upper triangular matrices, $\tilde D$ is obtained from a larger identity matrix by removing rows and columns and all entries of $L$, $\tilde D$ and $U$ are equal to 0, 1 or -1.<br />Comment: 20 pages, 17 figures

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....4f9d830ac097192bece6f2e9ac6d69f6