Back to Search
Start Over
Development of a Real-Time Magnetic Field Measurement System for Synchrotron Control
- Source :
- Electronics, Vol 10, Iss 2140, p 2140 (2021), Electronics, Volume 10, Issue 17
- Publication Year :
- 2021
- Publisher :
- MDPI AG, 2021.
-
Abstract
- The precise knowledge of the magnetic field produced by dipole magnets is critical to the operation of a synchrotron. Real-time measurement systems may be required, especially in the case of iron-dominated electromagnets with strong non-linear effects, to acquire the magnetic field and feed it back to various users. This work concerns the design and implementation of a new measurement system of this kind currently being deployed throughout the European Organization for Nuclear Research (CERN) accelerator complex. We first discuss the measurement principle, the general system architecture and the technology employed, focusing in particular on the most critical and specialized components developed, that is, the field marker trigger generator and the magnetic flux integrator. We then present the results of a detailed metrological characterization of the integrator, including the aspects of drift estimation and correction, as well as the absolute gain calibration and frequency response. We finally discuss the latency of the whole acquisition chain and present an outline of future work to improve the capabilities of the system.
- Subjects :
- TK7800-8360
Computer Networks and Communications
Computer science
B-train
bending dipole
integrator system
real-time magnetic measurements
magnetic sensors
synchrotron
White Rabbit network
law.invention
law
Electronic engineering
Electrical and Electronic Engineering
Detectors and Experimental Techniques
Electromagnet
System of measurement
Accelerators and Storage Rings
Synchrotron
Magnetic flux
Hardware and Architecture
Control and Systems Engineering
Measuring principle
Magnet
Integrator
Signal Processing
Systems architecture
Electronics
Subjects
Details
- Language :
- English
- ISSN :
- 20799292
- Volume :
- 10
- Issue :
- 2140
- Database :
- OpenAIRE
- Journal :
- Electronics
- Accession number :
- edsair.doi.dedup.....4f85858c871c72e24e92cdcfd6daa582