Back to Search Start Over

Room-Temperature Annealing-Free Gold Printing via Anion-Assisted Photochemical Deposition

Authors :
Dong Wu
Bowen Yao
Shuwang Wu
Hardik Hingorani
Qingyu Cui
Mutian Hua
Imri Frenkel
Yingjie Du
Tzung K. Hsiai
Ximin He
Source :
Advanced materials (Deerfield Beach, Fla.), vol 34, iss 32, Adv Mater
Publication Year :
2022
Publisher :
eScholarship, University of California, 2022.

Abstract

Metal patterning via additive manufacturing has been phasing-in to broad applications in many medical, electronics, aerospace, and automotive industries. While previous efforts have produced various promising metal-patterning strategies, their complexity and high cost have limited their practical application in rapid production and prototyping. Herein, a one-step gold printing technique based on anion-assisted photochemical deposition (APD), which can directly print highly conductive gold patterns (1.08 × 10(7) S m(−1)) under ambient conditions without post-annealing treatment, is introduced. Uniquely, the APD uses specific ion effects with projection lithography to pattern Au nanoparticles and simultaneously sinter them into tunable porous gold structures. The significant influence of kosmotropic or chaotropic anions in the precursor ink on tuning the morphologies and conductivities of the printed patterns by employing a series of different ions, including Cl(−) ions, in the printing process is presented. Additionally, the resistance stabilities and the electrochemical properties of the APD-printed gold patterns are carefully investigated. The high conductivity and excellent conformability of the printed Au electrodes are demonstrated with reliable performance in electrophysiological signal delivery and acquisition for biomedical applications. This work exploits the potential of photochemical-deposition-based metal patterning in flexible electronic manufacturing.

Details

Database :
OpenAIRE
Journal :
Advanced materials (Deerfield Beach, Fla.), vol 34, iss 32, Adv Mater
Accession number :
edsair.doi.dedup.....4f6e971985eb47850c1cc23607939198