Back to Search Start Over

Statistically induced topological phase transitions in a one-dimensional superlattice anyon-Hubbard model

Authors :
Zheng-Wei Zuo
Guo-Ling Li
Liben Li
Publication Year :
2017

Abstract

We theoretically investigate topological properties of the one-dimensional superlattice anyon-Hubbard model, which can be mapped to a superlattice bose-Hubbard model with an occupation-dependent phase factor by fractional Jordan-Wigner transformation. The topological anyon-Mott insulator is identified by topological invariant and edge modes using exact diagonalization and density-matrix renormalization-group algorithm. When only the statistical angle is varied and all other parameters are fixed, a statistically induced topological phase transition can be realized, which provides new insights into the topological phase transitions. What's more, we give an explanation of the statistically induced topological phase transition. The topological anyon-Mott phases can also appear in a variety of superlattice anyon-Hubbard models.<br />7 pages, 8 figures, comments are welcome

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....4f6cf46c9b40f072caf365a7d77333f0