Back to Search
Start Over
Cohomology of the minimal nilpotent orbit
- Source :
- Transformation Groups, Transformation Groups, Springer Verlag, 2008, 13 (2), pp.355-387. ⟨10.1007/s00031-008-9009-x⟩, Transformation Groups, Springer Verlag, 2008, 13 (2), pp.355-387. 〈10.1007/s00031-008-9009-x〉
- Publication Year :
- 2008
- Publisher :
- HAL CCSD, 2008.
-
Abstract
- We compute the integral cohomology of the minimal non-trivial nilpotent orbit in a complex simple (or quasi-simple) Lie algebra. We find by a uniform approach that the middle cohomology group is isomorphic to the fundamental group of the sub-root system generated by the long simple roots. The modulo $\ell$ reduction of the Springer correspondent representation involves the sign representation exactly when $\ell$ divides the order of this cohomology group. The primes dividing the torsion of the rest of the cohomology are bad primes.<br />29 pages, v2 : Leray-Serre spectral sequence replaced by Gysin sequence only, corrected typos
- Subjects :
- Fundamental group
Pure mathematics
correspondance de Springer
20G99
Nilpotent orbit
[ MATH.MATH-AT ] Mathematics [math]/Algebraic Topology [math.AT]
01 natural sciences
Mathematics::Algebraic Topology
symbols.namesake
Mathematics::K-Theory and Homology
ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION
0103 physical sciences
Lie algebra
FOS: Mathematics
Trivial representation
Representation Theory (math.RT)
0101 mathematics
Mathematics
Weyl group
Algebra and Number Theory
Chern class
systèmes de racines
[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]
010102 general mathematics
calcul de Schubert
Cohomology
[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]
[MATH.MATH-AT]Mathematics [math]/Algebraic Topology [math.AT]
Torsion (algebra)
symbols
Cohomologie entière
orbite nilpotente minimale
010307 mathematical physics
Geometry and Topology
suite de Gysin
Mathematics - Representation Theory
Subjects
Details
- Language :
- English
- ISSN :
- 10834362 and 1531586X
- Database :
- OpenAIRE
- Journal :
- Transformation Groups, Transformation Groups, Springer Verlag, 2008, 13 (2), pp.355-387. ⟨10.1007/s00031-008-9009-x⟩, Transformation Groups, Springer Verlag, 2008, 13 (2), pp.355-387. 〈10.1007/s00031-008-9009-x〉
- Accession number :
- edsair.doi.dedup.....4f418358eb0f3f9422d700e9da10c00f
- Full Text :
- https://doi.org/10.1007/s00031-008-9009-x⟩