Back to Search Start Over

Cohomology of the minimal nilpotent orbit

Authors :
Daniel Juteau
Laboratoire de Mathématiques Nicolas Oresme (LMNO)
Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Normandie Université (NU)
Laboratoire de Mathématiques Nicolas Oresme ( LMNO )
Université de Caen Normandie ( UNICAEN )
Normandie Université ( NU ) -Normandie Université ( NU ) -Centre National de la Recherche Scientifique ( CNRS )
Source :
Transformation Groups, Transformation Groups, Springer Verlag, 2008, 13 (2), pp.355-387. ⟨10.1007/s00031-008-9009-x⟩, Transformation Groups, Springer Verlag, 2008, 13 (2), pp.355-387. 〈10.1007/s00031-008-9009-x〉
Publication Year :
2008
Publisher :
HAL CCSD, 2008.

Abstract

We compute the integral cohomology of the minimal non-trivial nilpotent orbit in a complex simple (or quasi-simple) Lie algebra. We find by a uniform approach that the middle cohomology group is isomorphic to the fundamental group of the sub-root system generated by the long simple roots. The modulo $\ell$ reduction of the Springer correspondent representation involves the sign representation exactly when $\ell$ divides the order of this cohomology group. The primes dividing the torsion of the rest of the cohomology are bad primes.<br />29 pages, v2 : Leray-Serre spectral sequence replaced by Gysin sequence only, corrected typos

Details

Language :
English
ISSN :
10834362 and 1531586X
Database :
OpenAIRE
Journal :
Transformation Groups, Transformation Groups, Springer Verlag, 2008, 13 (2), pp.355-387. ⟨10.1007/s00031-008-9009-x⟩, Transformation Groups, Springer Verlag, 2008, 13 (2), pp.355-387. 〈10.1007/s00031-008-9009-x〉
Accession number :
edsair.doi.dedup.....4f418358eb0f3f9422d700e9da10c00f
Full Text :
https://doi.org/10.1007/s00031-008-9009-x⟩