Back to Search
Start Over
Tuning the product distribution during the catalytic pyrolysis of waste tires: The effect of the nature of metals and the reaction temperature
- Source :
- CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
- Publication Year :
- 2021
- Publisher :
- Elsevier Science, 2021.
-
Abstract
- Metal catalysts based on Ni, Co, and Pd supported on SiO2 were evaluated in the catalytic pyrolysis of waste tires using pyrolysis experiments coupled to gas chromatography/mass spectrometry (Py–GC/MS) and thermogravimetric analysis coupled with Fourier Transform Infrared spectrometer (TGA–FTIR) techniques. The effect of temperature and the nature of metals on the product distribution and reaction pathways was determined. Catalytic pyrolysis promoted aromatization and cracking reactions at particularly low temperatures ca. 350 °C, leading mainly to the formation of alkenes (isoprene), aromatic terpenes (p-cymene), aliphatic terpenes (d,l-limonene), and other aromatic compounds such as benzene, toluene, and xylenes (BTX). The Pd/SiO2 catalyst was the most selective toward aromatic compounds (around 40 %), owing to its well-known hydrogenation/dehydrogenation capacity, while CC bond cleavage reactions, leading to alkenes, were more favored on the Ni/SiO2 and Co/SiO2 catalysts. In all cases, high selectivity to limonene and isoprene was observed at low temperature. Above 400 °C, no significant differences in product distribution were observed between catalyzed and uncatalyzed pyrolysis. Herein, selectivity toward high-value hydrocarbons (i.e., d , l -limonene, isoprene, BTX, and p-cymene) during the catalytic pyrolysis of waste tires was tuned by the nature of the supported transition metals (i.e., Ni, Co, Pd) and the reaction temperature (e.g.<br />Centro de Investigación y Desarrollo en Ciencias Aplicadas
- Subjects :
- Inorganic chemistry
supported metal catalysts
02 engineering and technology
010402 general chemistry
01 natural sciences
Catalysis
high added-value products
chemistry.chemical_compound
catalytic pyrolysis
Dehydrogenation
Benzene
Ciencias Exactas
Isoprene
Chemistry
Aromatization
Química
General Chemistry
021001 nanoscience & nanotechnology
Toluene
Product distribution
0104 chemical sciences
purl.org/becyt/ford/2.4 [https]
purl.org/becyt/ford/2 [https]
BTX
0210 nano-technology
Pyrolysis
waste tires
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
- Accession number :
- edsair.doi.dedup.....4f28817c60e6cea2efa72e79cd9b0f11