Back to Search Start Over

Long-term wheel running changes on sensorimotor activity and skeletal muscle in male and female mice of accelerated senescence

Authors :
Rosa M. Escorihuela
Christian Griñán-Ferré
Marta Cosín-Tomás
María Jesús Álvarez-López
Jaume F. Lalanza
Sandra Sanchez-Roige
Perla Kaliman
Mercè Pallàs
Publication Year :
2014
Publisher :
Springer Netherlands, 2014.

Abstract

The senescence-accelerated mouse prone 8 (SAMP8) is considered a useful non-transgenic model for studying aspects of aging. Using SAM resistant 1 (SAMR1) as controls, the long-term effects of wheel running on skeletal muscle adaptations and behavioral traits were evaluated in senescent (P8) and resistant (R1) male and female mice. Long-term wheel running (WR) led to increases in locomotor activity, benefits in sensorimotor function, and changes in body weight in a gender-dependent manner. WR increased body weight and baseline levels of locomotor activity in female mice and improved balance and strength in male mice, compared to sedentary-control mice. WR resulted in key metabolic adaptations in skeletal muscle, associated with an increased activity of the sirtuin 1–AMP-activated protein kinase (AMPK)–PGC-1 alpha axis and changes in vascular endothelial growth factor A (Vegfa), glucose transporter type 4 (Glut4), and Cluster of Differentiation 36 (Cd36) gene expression. Overall, our data indicate that activity, balance, and strength decrease with age and that long-term WR may significantly improve the motor function in a mouse model of senescence in a gender-dependent manner.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....4efb70a8b125b93cdd6c6ae0bd8edead