Back to Search Start Over

New measurement of $^{12}$C+$^{12}$C fusion reaction at astrophysical energies

Authors :
W P, Tan
A, Boeltzig
C, Dulal
R J, deBoer
B, Frentz
S, Henderson
K B, Howard
R, Kelmar
J J, Kolata
J, Long
K T, Macon
S, Moylan
G F, Peaslee
M, Renaud
C, Seymour
G, Seymour
B, Vande Kolk
M, Wiescher
E F, Aguilera
P, Amador-Valenzuela
D, Lizcano
E, Martinez-Quiroz
Publication Year :
2020
Publisher :
arXiv, 2020.

Abstract

Carbon and oxygen burning reactions, in particular, $^{12}$C+$^{12}$C fusion, are important for the understanding and interpretation of the late phases of stellar evolution as well as the ignition and nucleosynthesis in cataclysmic binary systems such as type Ia supernovae and x-ray superbursts. A new measurement of this reaction has been performed at the University of Notre Dame using particle-$\gamma$ coincidence techniques with SAND (a silicon detector array) at the high-intensity 5U Pelletron accelerator. New results for $^{12}$C+$^{12}$C fusion at low energies relevant to nuclear astrophysics are reported. They show strong disagreement with a recent measurement using the indirect Trojan Horse method. The impact on the carbon burning process under astrophysical scenarios will be discussed.<br />Comment: accepted for publication in Phys. Rev. Lett

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....4eee8a9e8f94a42f23903d63639e6e38
Full Text :
https://doi.org/10.48550/arxiv.2005.03196