Back to Search
Start Over
Aggregation and Degradation of Dispersants and Oil by Microbial Exopolymers (ADDOMEx): Toward a Synthesis of Processes and Pathways of Marine Oil Snow Formation in Determining the Fate of Hydrocarbons
- Source :
- Frontiers in Marine Science, Vol 8 (2021)
- Publication Year :
- 2021
- Publisher :
- Frontiers Media S.A., 2021.
-
Abstract
- Microbes (bacteria, phytoplankton) in the ocean are responsible for the copious production of exopolymeric substances (EPS) that include transparent exopolymeric particles. These materials act as a matrix to form marine snow. After the Deepwater Horizon oil spill, marine oil snow (MOS) formed in massive quantities and influenced the fate and transport of oil in the ocean. The processes and pathways of MOS formation require further elucidation to be better understood, in particular we need to better understand how dispersants affect aggregation and degradation of oil. Toward that end, recent work has characterized EPS as a function of microbial community and environmental conditions. We present a conceptual model that incorporates recent findings in our understanding of the driving forces of MOS sedimentation and flocculent accumulation (MOSSFA) including factors that influence the scavenging of oil into MOS and the routes that promote decomposition of the oil post MOS formation. In particular, the model incorporates advances in our understanding of processes that control interactions between oil, dispersant, and EPS in producing either MOS that can sink or dispersed gels promoting microbial degradation of oil compounds. A critical element is the role of protein to carbohydrate ratios (P/C ratios) of EPS in the aggregation process of colloid and particle formation. The P/C ratio of EPS provides a chemical basis for the “stickiness” factor that is used in analytical or numerical simulations of the aggregation process. This factor also provides a relative measure for the strength of attachment of EPS to particle surfaces. Results from recent laboratory experiments demonstrate (i) the rapid formation of microbial assemblages, including their EPS, on oil droplets that is enhanced in the presence of Corexit-dispersed oil, and (ii) the subsequent rapid oil oxidation and microbial degradation in water. These findings, combined with the conceptual model, further improve our understanding of the fate of the sinking MOS (e.g., subsequent sedimentation and preservation/degradation) and expand our ability to predict the behavior and transport of spilled oil in the ocean, and the potential effects of Corexit application, specifically with respect to MOS processes (i.e., formation, fate, and half-lives) and Marine Oil Snow Sedimentation and Flocculent Accumulation.
- Subjects :
- 0301 basic medicine
010504 meteorology & atmospheric sciences
Science
marine snow
Ocean Engineering
Aquatic Science
QH1-199.5
Oceanography
oil
01 natural sciences
Dispersant
exopolymers
03 medical and health sciences
Microbial biodegradation
0105 earth and related environmental sciences
Marine snow
Water Science and Technology
Global and Planetary Change
Chemistry
General. Including nature conservation, geographical distribution
Sedimentation
030104 developmental biology
Microbial population biology
Oil droplet
Environmental chemistry
deepwater horizon
Degradation (geology)
marine oil snow
MOSSFA
Corexit
Subjects
Details
- Language :
- English
- ISSN :
- 22967745
- Volume :
- 8
- Database :
- OpenAIRE
- Journal :
- Frontiers in Marine Science
- Accession number :
- edsair.doi.dedup.....4e9ffb7731f568f0263b750df3ff0b44
- Full Text :
- https://doi.org/10.3389/fmars.2021.642160/full