Back to Search Start Over

A tempering approach for Itakura-Saito non-negative matrix factorization. With application to music transcription

Authors :
Roland Badeau
Nancy Bertin
Cédric Févotte
Laboratoire Traitement et Communication de l'Information (LTCI)
Télécom ParisTech-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)
Badeau, Roland
Source :
Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2009, Taipei, Taiwan. pp.1545--1548, ICASSP
Publication Year :
2009
Publisher :
HAL CCSD, 2009.

Abstract

International audience; In this paper we are interested in non-negative matrix factorization (NMF) with the Itakura-Saito (IS) divergence. Previous work has demonstrated the relevance of this cost function for the decomposition of audio power spectrograms. This is in particular due to its scale invariance, which makes it more robust to the wide dynamics of audio, a property which is not shared by other popular costs such as the Euclidean distance or the generalized Kulback-Leibler (KL) divergence. However, while the latter two cost functions are convex, the IS divergence is not, which makes it more prone to convergence to irrelevant local minima, as observed empirically. Thus, the aim of this paper is to propose a tempering scheme that favors convergence of IS-NMF to global minima. Our algorithm is based on NMF with the beta-divergence, where the shape parameter beta acts as a temperature parameter. Results on both synthetical and music data (in a transcription context) show the relevance of our approach.

Details

Language :
English
Database :
OpenAIRE
Journal :
Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2009, Taipei, Taiwan. pp.1545--1548, ICASSP
Accession number :
edsair.doi.dedup.....4e5cba21c09fc70aea3b32b0a9cb2034