Back to Search
Start Over
Comparative transcriptome analysis uncovers roles of hydrogen sulfide for alleviating cadmium toxicity in Tetrahymena thermophila
- Source :
- BMC Genomics, BMC Genomics, Vol 22, Iss 1, Pp 1-17 (2021)
- Publication Year :
- 2020
- Publisher :
- Research Square Platform LLC, 2020.
-
Abstract
- Background Cadmium (Cd) is a nonessential heavy metal with potentially deleterious effects on different organisms. The organisms have evolved sophisticated defense system to alleviate heavy metal toxicity. Hydrogen sulfide (H2S) effectively alleviates heavy metal toxicity in plants and reduces oxidative stress in mammals. However, the function of H2S for alleviating heavy metal toxicity in aquatic organisms remains less clear. Tetrahymena thermophila is an important model organism to evaluate toxic contaminants in an aquatic environment. In this study, the molecular roles of exogenously H2S application were explored by RNA sequencing under Cd stress in T. thermophila. Results The exposure of 30 μM Cd resulted in T. thermophila growth inhibition, cell nigrescence, and malondialdehyde (MDA) content considerably increase. However, exogenous NaHS (donor of H2S, 70 μM) significantly alleviated the Cd-induced toxicity by inhibiting Cd absorbtion, promoting CdS nanoparticles formation and improving antioxidant system. Comparative transcriptome analysis showed that the expression levels of 9152 genes changed under Cd stress (4658 upregulated and 4494 downregulated). However, only 1359 genes were differentially expressed with NaHS treatment under Cd stress (1087 upregulated and 272 downregulated). The functional categories of the differentially expressed genes (DEGs) by gene ontology (GO) revealed that the transcripts involved in the oxidation–reduction process, oxidoreductase activity, glutathione peroxidase activity, and cell redox homeostasis were the considerable enrichments between Cd stress and NaHS treatment under Cd stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that the carbon metabolism, glutathione metabolism, metabolism of xenobiotics by cytochrome P450, and ABC transporters were significantly differentially expressed components between Cd stress and NaHS treatment under Cd stress in T. thermophila. The relative expression levels of six DEGs were further confirmed through quantitative real-time polymerase chain reaction (qRT-PCR). Conclusion NaHS alleviated Cd stress mainly through inhibiting Cd absorbtion, promoting CdS nanoparticles formation, increasing oxidation resistance, and regulation of transport in free-living unicellular T. thermophila. These findings will expand our understanding for H2S functions in the freshwater protozoa.
- Subjects :
- 0106 biological sciences
lcsh:QH426-470
lcsh:Biotechnology
Metal toxicity
medicine.disease_cause
01 natural sciences
Tetrahymena thermophila
Transcriptome
03 medical and health sciences
lcsh:TP248.13-248.65
Malondialdehyde
Genetics
medicine
Animals
Hydrogen Sulfide
030304 developmental biology
0303 health sciences
biology
Cd stress
H2S
Regulation of transport
Gene Expression Profiling
Tetrahymena
Oxidation resistance
Cytochrome P450
Metabolism
Cell redox homeostasis
biology.organism_classification
lcsh:Genetics
Biochemistry
Toxicity
biology.protein
Oxidative stress
010606 plant biology & botany
Biotechnology
Research Article
Cadmium
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- BMC Genomics, BMC Genomics, Vol 22, Iss 1, Pp 1-17 (2021)
- Accession number :
- edsair.doi.dedup.....4e37c6a5263b7ef7e394e9f982196834
- Full Text :
- https://doi.org/10.21203/rs.3.rs-24761/v2