Back to Search
Start Over
Sobolev-type inequalities on variable exponent Morrey spaces of an integral form
- Source :
- Ricerche di Matematica. 71(1):189-204
- Publication Year :
- 2022
- Publisher :
- Springer Nature, 2022.
-
Abstract
- The aim of this paper is to deal with the boundedness of the Hardy-Littlewood maximal operator on variable exponent Morrey spaces of an integral form. As an application of the boundedness of the maximal operator, we establish Sobolev-type inequalities for Riesz potentials $$I_{\alpha (\cdot )}f$$ of variable order $$\alpha (\cdot )$$ of functions f in variable exponent Morrey spaces of an integral form.
- Subjects :
- Morrey space
Mathematics::Functional Analysis
Pure mathematics
variable exponent
Variable exponent
Applied Mathematics
General Mathematics
Mathematics::Analysis of PDEs
Mathematics::Classical Analysis and ODEs
Order (ring theory)
Integral form
Type (model theory)
Sobolev space
Riesz potential
Maximal operator
Sobolev's inequality
Algebra over a field
maximal functions
Variable (mathematics)
Mathematics
Subjects
Details
- Language :
- English
- ISSN :
- 00355038
- Volume :
- 71
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Ricerche di Matematica
- Accession number :
- edsair.doi.dedup.....4df938ed07ad0064b8a601f3593aa937