Back to Search Start Over

Understanding Central Nervous System Effects of Deliriant Hallucinogenic Drugs through Experimental Animal Models

Authors :
David E. Nichols
Allan V. Kalueff
Christopher Collins
Oleg A. Yakovlev
Evan J. Kyzar
Konstantin A. Demin
Andrey D. Volgin
Polina A. Alekseeva
Source :
ACS Chemical Neuroscience. 10:143-154
Publication Year :
2018
Publisher :
American Chemical Society (ACS), 2018.

Abstract

Hallucinogenic drugs potently alter human behavior and have a millennia-long history of use for medicinal and religious purposes. Interest is rapidly growing in their potential as CNS modulators and therapeutic agents for brain conditions. Antimuscarinic cholinergic drugs, such as atropine and scopolamine, induce characteristic hyperactivity and dream-like hallucinations and form a separate group of hallucinogens known as "deliriants". Although atropine and scopolamine are relatively well-studied drugs in cholinergic physiology, deliriants represent the least-studied class of hallucinogens in terms of their behavioral and neurological phenotypes. As such, novel approaches and new model organisms are needed to investigate the CNS effects of these compounds. Here, we comprehensively evaluate the preclinical effects of deliriant hallucinogens in various animal models, their mechanisms of action, and potential interplay with other signaling pathways. We also parallel experimental and clinical findings on deliriant agents and outline future directions of translational research in this field.

Details

ISSN :
19487193
Volume :
10
Database :
OpenAIRE
Journal :
ACS Chemical Neuroscience
Accession number :
edsair.doi.dedup.....4de112b4e08c4973e8b1ad1e9838099a
Full Text :
https://doi.org/10.1021/acschemneuro.8b00433