Back to Search
Start Over
Metabolite profiling of the multiple tyrosine kinase inhibitor lenvatinib: a cross-species comparison
- Source :
- Investigational New Drugs, 34(3), 300. Kluwer Academic Publishers
- Publication Year :
- 2016
- Publisher :
- Springer Science and Business Media LLC, 2016.
-
Abstract
- Lenvatinib is an oral, multiple receptor tyrosine kinase inhibitor. Preclinical drug metabolism studies showed unique metabolic pathways for lenvatinib in monkeys and rats. A human mass balance study demonstrated that lenvatinib related material is mainly excreted via feces with a small fraction as unchanged parent drug, but little is reported about its metabolic fate. The objective of the current study was to further elucidate the metabolic pathways of lenvatinib in humans and to compare these results to the metabolism in rats and monkeys. To this end, we used plasma, urine and feces collected in a human mass balance study after a single 24 mg (100 μCi) oral dose of (14)C-lenvatinib. Metabolites of (14)C-lenvatinib were identified using liquid chromatography (high resolution) mass spectrometry with off-line radioactivity detection. Close to 50 lenvatinib-related compounds were detected. In humans, unchanged lenvatinib accounted for 97 % of the radioactivity in plasma, and comprised 0.38 and 2.5 % of the administered dose excreted in urine and feces, respectively. The primary biotransformation pathways of lenvatinib were hydrolysis, oxidation and hydroxylation, N-oxidation, dealkylation and glucuronidation. Various combinations of these conversions with modifications, including hydrolysis, gluthathione/cysteine conjugation, intramolecular rearrangement and dimerization, were observed. Some metabolites seem to be unique to the investigated species (human, rat, monkey). Because all lenvatinib metabolites in human plasma were at very low levels compared to lenvatinib, only lenvatinib is expected to contribute to the pharmacological effects in humans.
- Subjects :
- Male
medicine.drug_class
Glucuronidation
Administration, Oral
Antineoplastic Agents
Urine
Mass balance
Pharmacology
030226 pharmacology & pharmacy
Mass Spectrometry
Tyrosine-kinase inhibitor
Rats, Sprague-Dawley
Hydroxylation
03 medical and health sciences
chemistry.chemical_compound
0302 clinical medicine
Species Specificity
Pharmacokinetics
medicine
Lenvatinib
Animals
Humans
Pharmacology (medical)
Protein Kinase Inhibitors
Phenylurea Compounds
Metabolite identification
Metabolism
Rats
Macaca fascicularis
Oncology
chemistry
Biochemistry
030220 oncology & carcinogenesis
Quinolines
Clinical pharmacology
Drug metabolism
Chromatography, Liquid
Subjects
Details
- ISSN :
- 15730646 and 01676997
- Volume :
- 34
- Database :
- OpenAIRE
- Journal :
- Investigational New Drugs
- Accession number :
- edsair.doi.dedup.....4dd39856658a15cba71a6c483e7e6307