Back to Search Start Over

Numerical Investigation of the In-Plane seismic Performance of Unstrengthened and TRM-Strengthened Rammed Earth Walls

Authors :
Daniel V. Oliveira
Rui André Martins Silva
Reza Allahvirdizadeh
Universidade do Minho
Source :
Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP
Publication Year :
2019
Publisher :
Informa UK Limited, 2019.

Abstract

The large availability of raw earth around the World led to its extensive use as a building material through history. Thus, earthen materials integrate several historical monuments, but their main use was to build living and working environments for billions of people. On the other hand, past earthquakes revealed their inadequate seismic behavior, which is a matter of concern as a significant percentage of earthen buildings are located in regions with medium to high seismic hazard. Nevertheless, their seismic behavior and the development of efficient strengthening solutions are topics that are not yet sufficiently investigated in the literature. In this context, this study investigates numerically the in-plane seismic behavior of a rammed earth component by means of advanced nonlinear finite element modeling, which included performing nonlinear static (pushover) and nonlinear dynamic analyses. Moreover, the strengthening effectiveness of a low-cost textile-reinforced mortar on such component was also evaluated. The strengthening was observed to increase the load and displacement capacities, to preserve the integrity for higher lateral load levels and to postpone failure without adding significant mass to the system. Furthermore, the pushover analysis was shown to predict reliably the capacities of the models with respect to the incremental dynamic analysis.<br />This work was financed by FEDER funds through the Competitively Factors Operational Programme (COMPETE) and by national funds through the Foundation for Science and Technology (FCT) within the scope of projects POCI-01-0145-FEDER-016737 (PTDC/ECM-EST/2777/2014) and POCI-01-0145-FEDER-007633. The support from grant SFRH/BPD/97082/2013 is also acknowledged.

Details

ISSN :
15583066 and 15583058
Volume :
15
Database :
OpenAIRE
Journal :
International Journal of Architectural Heritage
Accession number :
edsair.doi.dedup.....4dd36621fc129fed5ff30be3f9e2a550
Full Text :
https://doi.org/10.1080/15583058.2019.1629507