Back to Search
Start Over
DNA methylation regulates discrimination of enhancers from promoters through a H3K4me1-H3K4me3 seesaw mechanism
- Source :
- BMC Genomics, Vol 18, Iss 1, Pp 1-21 (2017), BMC Genomics
- Publication Year :
- 2017
- Publisher :
- BMC, 2017.
-
Abstract
- Background DNA methylation at promoters is largely correlated with inhibition of gene expression. However, the role of DNA methylation at enhancers is not fully understood, although a crosstalk with chromatin marks is expected. Actually, there exist contradictory reports about positive and negative correlations between DNA methylation and H3K4me1, a chromatin hallmark of enhancers. Results We investigated the relationship between DNA methylation and active chromatin marks through genome-wide correlations, and found anti-correlation between H3K4me1 and H3K4me3 enrichment at low and intermediate DNA methylation loci. We hypothesized “seesaw” dynamics between H3K4me1 and H3K4me3 in the low and intermediate DNA methylation range, in which DNA methylation discriminates between enhancers and promoters, marked by H3K4me1 and H3K4me3, respectively. Low methylated regions are H3K4me3 enriched, while those with intermediate DNA methylation levels are progressively H3K4me1 enriched. Additionally, the enrichment of H3K27ac, distinguishing active from primed enhancers, follows a plateau in the lower range of the intermediate DNA methylation level, corresponding to active enhancers, and decreases linearly in the higher range of the intermediate DNA methylation. Thus, the decrease of the DNA methylation switches smoothly the state of the enhancers from a primed to an active state. We summarize these observations into a rule of thumb of one-out-of-three methylation marks: “In each genomic region only one out of these three methylation marks {DNA methylation, H3K4me1, H3K4me3} is high. If it is the DNA methylation, the region is inactive. If it is H3K4me1, the region is an enhancer, and if it is H3K4me3, the region is a promoter”. To test our model, we used available genome-wide datasets of H3K4 methyltransferases knockouts. Our analysis suggests that CXXC proteins, as readers of non-methylated CpGs would regulate the “seesaw” mechanism that focuses H3K4me3 to unmethylated sites, while being repulsed from H3K4me1 decorated enhancers and CpG island shores. Conclusions Our results show that DNA methylation discriminates promoters from enhancers through H3K4me1-H3K4me3 seesaw mechanism, and suggest its possible function in the inheritance of chromatin marks after cell division. Our analyses suggest aberrant formation of promoter-like regions and ectopic transcription of hypomethylated regions of DNA. Such mechanism process can have important implications in biological process in where it has been reported abnormal DNA methylation status such as cancer and aging. Electronic supplementary material The online version of this article (10.1186/s12864-017-4353-7) contains supplementary material, which is available to authorized users.
- Subjects :
- 0301 basic medicine
Methyltransferase
lcsh:QH426-470
lcsh:Biotechnology
Gene Expression
Histones
Cytosine
Mice
03 medical and health sciences
chemistry.chemical_compound
Protein Domains
Next generation sequencing
lcsh:TP248.13-248.65
Genetics
Enhancers
Animals
Histone code
Promoter Regions, Genetic
Enhancer
Computational epigenomics
DNA methylation
biology
Histone modifications
H3K4me1
Methylation
H3K4me3
Chromatin
Cell biology
DNA-Binding Proteins
Histone Code
lcsh:Genetics
Enhancer Elements, Genetic
030104 developmental biology
Histone
chemistry
biology.protein
Promoters
DNA
Research Article
Biotechnology
Subjects
Details
- Language :
- English
- ISSN :
- 14712164
- Volume :
- 18
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- BMC Genomics
- Accession number :
- edsair.doi.dedup.....4da65657b46987ddb32fd92a92889439
- Full Text :
- https://doi.org/10.1186/s12864-017-4353-7