Back to Search Start Over

Instance space analysis of combinatorial multi-objective optimization problems

Authors :
Kate Smith-Miles
Arnaud Liefooghe
Estefania Yap
Mario A. Muñoz
University of Melbourne
Japanese French Laboratory for Informatics (JFLI)
National Institute of Informatics (NII)-The University of Tokyo (UTokyo)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Optimisation de grande taille et calcul large échelle (BONUS)
Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
The University of Melbourne
Université de Lille-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)
Source :
2020 IEEE Congress on Evolutionary Computation (CEC), IEEE CEC 2020-Congress on Evolutionary Computation, IEEE CEC 2020-Congress on Evolutionary Computation, 2020, Glasgow, United Kingdom. ⟨10.1109/CEC48606.2020.9185664⟩, CEC
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; In recent years, there has been a continuous stream of development in evolutionary multi-objective optimization (EMO) algorithms. The large quantity of existing algorithms introduces difficulty in selecting suitable algorithms for a given problem instance. In this paper, we perform instance space analysis on discrete multi-objective optimization problems (MOPs) for the first time under three different conditions. We create visualizations of the relationship between problem instances and algorithm performance for instance features previously identified using decision trees, as well an independent feature selection. The suitability of these features in discriminating between algorithm performance and understanding strengths and weaknesses is investigated. Furthermore, we explore the impact of various definitions of “good” performance. The visualization of the instance space provides an alternative method of algorithm discrimination by showing clusters of instances where algorithms perform well across the instance space. We validate the suitability of existing features and identify opportunities for future development.

Details

Language :
English
Database :
OpenAIRE
Journal :
2020 IEEE Congress on Evolutionary Computation (CEC), IEEE CEC 2020-Congress on Evolutionary Computation, IEEE CEC 2020-Congress on Evolutionary Computation, 2020, Glasgow, United Kingdom. ⟨10.1109/CEC48606.2020.9185664⟩, CEC
Accession number :
edsair.doi.dedup.....4d8c3d9838e2262f07280fc79ec1b2bb
Full Text :
https://doi.org/10.1109/CEC48606.2020.9185664⟩