Back to Search Start Over

Electron acceleration by wave turbulence in a magnetized plasma

Authors :
Ruth Bamford
Gianluca Gregori
Federico Fraschetti
D. Q. Lamb
A. Rigby
Yasuhiro Kuramitsu
Raoul Trines
Youichi Sakawa
Subir Sarkar
Francesco Miniati
Christopher Spindloe
Bruno Albertazzi
Anthony R. Bell
Robert Bingham
Taichi Morita
Petros Tzeferacos
Pawel Kozlowski
F. Cruz
Brian Reville
P. Graham
Luis O. Silva
Sergey Lebedev
M. Oliver
Jean-Raphael Marques
Y. Hara
J. E. Cross
M. Koenig
Laboratoire pour l'utilisation des lasers intenses (LULI)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Source :
Nature Phys., Nature Phys., 2018, 14 (5), pp.475-479. ⟨10.1038/s41567-018-0059-2⟩, Rigby, A, Cruz, F, Albertazzi, B, Bamford, R, Bell, A R, Cross, J E, Fraschetti, F, Graham, P, Hara, Y, Kozlowski, P M, Kuramitsu, Y, Lamb, D Q, Lebedev, S, Marques, J R, Miniati, F, Morita, T, Oliver, M, Reville, B, Sakawa, Y, Sarkar, S, Spindloe, C, Trines, R, Tzeferacos, P, Silva, L O, Bingham, R, Koenig, M & Gregori, G 2018, ' Electron acceleration by wave turbulence in a magnetized plasma ', Nature Physics, vol. 14, no. 5, pp. 475-479 . https://doi.org/10.1038/s41567-018-0059-2, Nature Physics
Publication Year :
2018
Publisher :
Springer Nature, 2018.

Abstract

Astrophysical shocks are commonly revealed by the non-thermal emission of energetic electrons accelerated in situ1–3. Strong shocks are expected to accelerate particles to very high energies4–6; however, they require a source of particles with velocities fast enough to permit multiple shock crossings. While the resulting diffusive shock acceleration 4 process can account for observations, the kinetic physics regulating the continuous injection of non-thermal particles is not well understood. Indeed, this injection problem is particularly acute for electrons, which rely on high-frequency plasma fluctuations to raise them above the thermal pool7,8. Here we show, using laboratory laser-produced shock experiments, that, in the presence of a strong magnetic field, significant electron pre-heating is achieved. We demonstrate that the key mechanism in producing these energetic electrons is through the generation of lower-hybrid turbulence via shock-reflected ions. Our experimental results are analogous to many astrophysical systems, including the interaction of a comet with the solar wind 9 , a setting where electron acceleration via lower-hybrid waves is possible. Electrons can be accelerated by astrophysical shocks if they are sufficiently fast to start with. As laboratory laser-produced shock experiments reveal, this can be achieved by lower-hybrid waves generated by a shock-reflected ion instability.

Details

ISSN :
17452473
Database :
OpenAIRE
Journal :
Nature Phys., Nature Phys., 2018, 14 (5), pp.475-479. ⟨10.1038/s41567-018-0059-2⟩, Rigby, A, Cruz, F, Albertazzi, B, Bamford, R, Bell, A R, Cross, J E, Fraschetti, F, Graham, P, Hara, Y, Kozlowski, P M, Kuramitsu, Y, Lamb, D Q, Lebedev, S, Marques, J R, Miniati, F, Morita, T, Oliver, M, Reville, B, Sakawa, Y, Sarkar, S, Spindloe, C, Trines, R, Tzeferacos, P, Silva, L O, Bingham, R, Koenig, M & Gregori, G 2018, ' Electron acceleration by wave turbulence in a magnetized plasma ', Nature Physics, vol. 14, no. 5, pp. 475-479 . https://doi.org/10.1038/s41567-018-0059-2, Nature Physics
Accession number :
edsair.doi.dedup.....4d69f75daa8bc04d792be10b22bf6b53