Back to Search Start Over

A new operational matrix of fractional derivative based on the generalized Gegenbauer–Humbert polynomials to solve fractional differential equations

Authors :
Aydin Secer
Mustafa Bayram
Jumana H. S. Alkhalissi
Ibrahim Emiroglu
Fatih Taşçi
Mühendislik ve Doğa Bilimleri Fakültesi
Source :
Alexandria Engineering Journal, Vol 60, Iss 4, Pp 3509-3519 (2021)
Publication Year :
2021
Publisher :
Elsevier, 2021.

Abstract

In this paper, a new type of wavelet method to solve fractional differential equations (linear or nonlinear) is proposed. The proposed method is based on the generalized Gegenbauer–Humbert polynomial. First, we derived the operational matrices for integer and fractional order derivatives. Then, using these operational matrices with the proposed method, we transformed the given problem into a system of algebraic equations. Then, some linear and nonlinear examples were considered and discussed to confirm the efficiency and accuracy of the proposed method. 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/ 4.0/).

Details

Language :
English
ISSN :
11100168
Volume :
60
Issue :
4
Database :
OpenAIRE
Journal :
Alexandria Engineering Journal
Accession number :
edsair.doi.dedup.....4d6532b38e253f8152eb2fb2c7044635