Back to Search Start Over

Training on the Edge: The why and the how

Authors :
Navjot Kukreja
Jan Hückelheim
Paul D. Hovland
Nicola J. Ferrier
Olivier Beaumont
Alena Shilova
Gerard J. Gorman
Department of Earth Science and Engineering [Imperial College London]
Imperial College London
Reformulations based algorithms for Combinatorial Optimization (Realopt)
Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Mathematics and Computer Science Division [ANL] (MCS)
Argonne National Laboratory [Lemont] (ANL)
This work was partly funded by the Intel Parallel Computing Centre at Imperial College London and EPSRC EP/R029423/1.This work was partly funded by HPC-BigData INRIA Project LAB (IPL). This work was funded in part by a grant from U.S. Department of Energy, Office of Science, under contract DE-AC02-06CH1135
Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Source :
IPDPS Workshops, PAISE2019-1st Workshop on Parallel AI and Systems for the Edge, PAISE2019-1st Workshop on Parallel AI and Systems for the Edge, May 2019, Rio de Janeiro, Brazil
Publication Year :
2019
Publisher :
IEEE, 2019.

Abstract

Edge computing is the natural progression from Cloud computing, where, instead of collecting all data and processing it centrally, like in a cloud computing environment, we distribute the computing power and try to do as much processing as possible, close to the source of the data. There are various reasons this model is being adopted quickly, including privacy, and reduced power and bandwidth requirements on the Edge nodes. While it is common to see inference being done on Edge nodes today, it is much less common to do training on the Edge. The reasons for this range from computational limitations, to it not being advantageous in reducing communications between the Edge nodes. In this paper, we explore some scenarios where it is advantageous to do training on the Edge, as well as the use of checkpointing strategies to save memory.<br />Comment: Submitted to PAISE 2019

Details

Database :
OpenAIRE
Journal :
2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
Accession number :
edsair.doi.dedup.....4d49cb686aec6d39d491e4398d7ed5e9
Full Text :
https://doi.org/10.1109/ipdpsw.2019.00148