Back to Search Start Over

Seismic monitoring in the Gugla rock glacier (Switzerland): ambient noise correlation, microseismicity and modelling

Authors :
Reynald Delaloye
Stéphane Garambois
Raphaël Mayoraz
Laurent Baillet
Antoine Guillemot
Eric Larose
Agnès Helmstetter
Institut des Sciences de la Terre (ISTerre)
Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Grenoble Alpes (UGA)-Université Gustave Eiffel-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])
CANTON DU VALAIS SION CHE
Partenaires IRSTEA
Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
Université de Fribourg
Albert-Ludwigs-Universität Freiburg
Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA)
Université de Fribourg = University of Fribourg (UNIFR)
Source :
Geophysical Journal International, Geophysical Journal International, Oxford University Press (OUP), 2020, 221 (3), pp.1719-1735. ⟨10.1093/gji/ggaa097⟩, Geophysical Journal International, 2020, 221 (3), pp.1719-1735. ⟨10.1093/gji/ggaa097⟩
Publication Year :
2020
Publisher :
Oxford University Press (OUP), 2020.

Abstract

International audience; A network of seismometers has been installed on the Gugla rock glacier since October 2015 to estimate seismic velocity changes and detect micro-seismicity. These two processes are related to mechanical and structural variations occurring within the rock glacier. Seismic monitoring thus allows a better understanding of the dynamics of rock glaciers throughout the year. We observed seasonal variations in seismic wave velocity and micro-seismic activity over the three years of the study. In the first part of our analysis, we used ambient noise correlations to compute daily changes of surface wave velocity. In winter, seismic wave velocities were higher, probably due to refreezing of the active permafrost layer and cooling of the uppermost permafrost layers, leading to increased overall rigidity of the medium. This assumption was verified using a seismic model of wave propagation that estimates the depth of P-and S-wave velocity changes from 0 down to 10 m. During melting periods, both a sudden velocity decrease and a decorrelation of the seismic responses were observed. These effects can probably be explained by the increased water content of the active layer. In the second part of our study, we focused on detecting micro-seismic signals generated in the vicinity of the rock glacier. This seismic activity (micro-quakes and rockfalls) also exhibits seasonal variations, with a maximum in spring and summer, which correlate with acceleration of the rock glacier's displacement rate. In addition, we observed short bursts of micro-seismicity, both during snowfall and during rapid melting periods. All these observations could be included in systems monitoring permafrost and slope destabilization, to complement existing records.

Details

ISSN :
1365246X and 0956540X
Volume :
221
Database :
OpenAIRE
Journal :
Geophysical Journal International
Accession number :
edsair.doi.dedup.....4d43262d6e624438f9891945c6a4a0cc