Back to Search Start Over

Hydrogen‐Free and Dendrite‐Free All‐Solid‐State Zn‐Ion Batteries

Authors :
Chunyi Zhi
Zhuoxin Liu
Shengmei Chen
Shimou Chen
Zijie Tang
Na Li
Juan Antonio Zapien
Longtao Ma
Jun Fan
Source :
Advanced Materials. 32:1908121
Publication Year :
2020
Publisher :
Wiley, 2020.

Abstract

An ionic-liquid-based Zn salt electrolyte is demonstrated to be an effective route to solve both the side-reaction of the hydrogen evolution reaction (HER) and Zn-dendrite growth in Zn-ion batteries. The developed electrolyte enables hydrogen-free, dendrite-free Zn plating/stripping over 1500 h cycle (3000 cycles) at 2 mA cm-2 with nearly 100% coulombic efficiency. Meanwhile, the oxygen-induced corrosion and passivation are also effectively suppressed. These features bring Zn-ion batteries an unprecedented long lifespan over 40 000 cycles at 4 A g-1 and high voltage of 2.05 V with a cobalt hexacyanoferrate cathode. Furthermore, a 28.6 µm thick solid polymer electrolyte of a poly(vinylidene fluoride-hexafluoropropylene) film filled with poly(ethylene oxide)/ionic-liquid-based Zn salt is constructed to build an all-solid-state Zn-ion battery. The all-solid-state Zn-ion batteries show excellent cycling performance of 30 000 cycles at 2 A g-1 at room temperature and withstand high temperature up to 70 °C, low temperature to -20 °C, as well as abuse test of bending deformation up to 150° for 100 cycles and eight times cutting. This is the first demonstration of an all-solid-state Zn-ion battery based on a newly developed electrolyte, which meanwhile solves the deep-seated hydrogen evolution and dendrite growth problem in traditional Zn-ion batteries.

Details

ISSN :
15214095 and 09359648
Volume :
32
Database :
OpenAIRE
Journal :
Advanced Materials
Accession number :
edsair.doi.dedup.....4d178191846515345a9ef561c6c91fe2
Full Text :
https://doi.org/10.1002/adma.201908121