Back to Search
Start Over
A geometric characterization of invertible quantum measurement maps
- Source :
- Journal of Functional Analysis. 264:464-478
- Publication Year :
- 2013
- Publisher :
- Elsevier BV, 2013.
-
Abstract
- A geometric characterization is given for invertible quantum measurement maps. Denote by ${\mathcal S}(H)$ the convex set of all states (i.e., trace-1 positive operators) on Hilbert space $H$ with dim$H\leq \infty$, and $[\rho_1, \rho_2]$ the line segment joining two elements $\rho_1, \rho_2$ in ${\mathcal S}(H)$. It is shown that a bijective map $\phi:{\mathcal S}(H) \rightarrow {\mathcal S}(H)$ satisfies $\phi([\rho_1, \rho_2]) \subseteq [\phi(\rho_1),\phi(\rho_2)]$ for any $\rho_1, \rho_2 \in {\mathcal S}$ if and only if $\phi$ has one of the following forms $$\rho \mapsto \frac{M\rho M^*}{{\rm tr}(M\rho M^*)}\quad \hbox{or} \quad \rho \mapsto \frac{M\rho^T M^*}{{\rm tr}(M\rho^T M^*)},$$ where $M$ is an invertible bounded linear operator and $\rho^T$ is the transpose of $\rho$ with respect to an arbitrarily fixed orthonormal basis.<br />Comment: 14 pages
- Subjects :
- Trace (linear algebra)
Convex set
FOS: Physical sciences
Computer Science::Computational Geometry
Bounded operator
law.invention
Segment preserving maps
Combinatorics
symbols.namesake
Quantum measurement
Quantum state
law
FOS: Mathematics
Orthonormal basis
Operator Algebras (math.OA)
Mathematics
Quantum Physics
Mathematics - Operator Algebras
Hilbert space
Quantum states
47B49, 47L07, 47N50
Invertible matrix
Bijection
symbols
Quantum Physics (quant-ph)
Analysis
Subjects
Details
- ISSN :
- 00221236
- Volume :
- 264
- Database :
- OpenAIRE
- Journal :
- Journal of Functional Analysis
- Accession number :
- edsair.doi.dedup.....4ce8319193515132bc980744afa76af4
- Full Text :
- https://doi.org/10.1016/j.jfa.2012.11.005