Back to Search Start Over

A geometric characterization of invertible quantum measurement maps

Authors :
Kan He
Chi-Kwong Li
Jinchuan Hou
Source :
Journal of Functional Analysis. 264:464-478
Publication Year :
2013
Publisher :
Elsevier BV, 2013.

Abstract

A geometric characterization is given for invertible quantum measurement maps. Denote by ${\mathcal S}(H)$ the convex set of all states (i.e., trace-1 positive operators) on Hilbert space $H$ with dim$H\leq \infty$, and $[\rho_1, \rho_2]$ the line segment joining two elements $\rho_1, \rho_2$ in ${\mathcal S}(H)$. It is shown that a bijective map $\phi:{\mathcal S}(H) \rightarrow {\mathcal S}(H)$ satisfies $\phi([\rho_1, \rho_2]) \subseteq [\phi(\rho_1),\phi(\rho_2)]$ for any $\rho_1, \rho_2 \in {\mathcal S}$ if and only if $\phi$ has one of the following forms $$\rho \mapsto \frac{M\rho M^*}{{\rm tr}(M\rho M^*)}\quad \hbox{or} \quad \rho \mapsto \frac{M\rho^T M^*}{{\rm tr}(M\rho^T M^*)},$$ where $M$ is an invertible bounded linear operator and $\rho^T$ is the transpose of $\rho$ with respect to an arbitrarily fixed orthonormal basis.<br />Comment: 14 pages

Details

ISSN :
00221236
Volume :
264
Database :
OpenAIRE
Journal :
Journal of Functional Analysis
Accession number :
edsair.doi.dedup.....4ce8319193515132bc980744afa76af4
Full Text :
https://doi.org/10.1016/j.jfa.2012.11.005