Back to Search Start Over

Covariance matrix of the bias-corrected maximum likelihood estimator in generalized linear models

Authors :
Lúcia Pereira Barroso
Denise Aparecida Botter
Gauss M. Cordeiro
Alexsandro B. Cavalcanti
Source :
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
Publication Year :
2014

Abstract

For the first time, we obtain a general formula for the $$n^{-2}$$ asymptotic covariance matrix of the bias-corrected maximum likelihood estimators of the linear parameters in generalized linear models, where $$n$$ is the sample size. The usefulness of the formula is illustrated in order to obtain a better estimate of the covariance of the maximum likelihood estimators and to construct better Wald statistics. Simulation studies and an application support our theoretical results.

Details

Database :
OpenAIRE
Journal :
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
Accession number :
edsair.doi.dedup.....4cde2d53e54f6882f9b67e47bf0cd263