Back to Search
Start Over
Covariance matrix of the bias-corrected maximum likelihood estimator in generalized linear models
- Source :
- Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
- Publication Year :
- 2014
-
Abstract
- For the first time, we obtain a general formula for the $$n^{-2}$$ asymptotic covariance matrix of the bias-corrected maximum likelihood estimators of the linear parameters in generalized linear models, where $$n$$ is the sample size. The usefulness of the formula is illustrated in order to obtain a better estimate of the covariance of the maximum likelihood estimators and to construct better Wald statistics. Simulation studies and an application support our theoretical results.
- Subjects :
- Statistics and Probability
Covariance function
Estimator
Generalized linear array model
Covariance
INFERÊNCIA PARAMÉTRICA
Generalized linear mixed model
Estimation of covariance matrices
Statistics
Law of total covariance
Statistics::Methodology
Applied mathematics
Statistics, Probability and Uncertainty
CMA-ES
Mathematics
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
- Accession number :
- edsair.doi.dedup.....4cde2d53e54f6882f9b67e47bf0cd263