Back to Search Start Over

Towards Qualitative Word Embeddings Evaluation: Measuring Neighbors Variation

Authors :
Bénédicte Pierrejean
Ludovic Tanguy
Tanguy, Ludovic
Cognition, Langues, Langage, Ergonomie (CLLE-ERSS)
Université Bordeaux Montaigne-École pratique des hautes études (EPHE)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Toulouse - Jean Jaurès (UT2J)-Centre National de la Recherche Scientifique (CNRS)
Cognition, Langues, Langage, Ergonomie ( CLLE-ERSS )
École pratique des hautes études ( EPHE ) -Université Toulouse - Jean Jaurès ( UT2J ) -Université Bordeaux Montaigne-Centre National de la Recherche Scientifique ( CNRS )
École pratique des hautes études (EPHE)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Toulouse - Jean Jaurès (UT2J)-Université Bordeaux Montaigne-Centre National de la Recherche Scientifique (CNRS)
Source :
Proceedings of NAACL-HLT 2018, Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop, Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop, Jun 2018, New-Orleans, United States. pp.32-39, Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop, 2018, New-Orleans, United States. Proceedings of NAACL-HLT 2018:, pp.32-39, NAACL-HLT (Student Research Workshop)
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; We propose a method to study the variation lying between different word embeddings models trained with different parameters. We explore the variation between models trained with only one varying parameter by observing the distributional neighbors variation and show how changing only one parameter can have a massive impact on a given semantic space. We show that the variation is not affecting all words of the semantic space equally. Variation is influenced by parameters such as setting a parameter to its minimum or maximum value but it also depends on the corpus intrinsic features such as the frequency of a word. We identify semantic classes of words remaining stable across the models trained and specific words having high variation.

Details

Language :
English
Database :
OpenAIRE
Journal :
Proceedings of NAACL-HLT 2018, Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop, Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop, Jun 2018, New-Orleans, United States. pp.32-39, Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop, 2018, New-Orleans, United States. Proceedings of NAACL-HLT 2018:, pp.32-39, NAACL-HLT (Student Research Workshop)
Accession number :
edsair.doi.dedup.....4cb11e10531cf55f94023298c4c5ad3b