Back to Search Start Over

Near critical, self-similar, blow-up solutions of the generalised Korteweg–de Vries equation: Asymptotics and computations

Authors :
Giuseppina Settanni
Othmar Koch
Ewa Weinmüller
Chris Budd
Vivi Rottschäfer
Pierluigi Amodio
Source :
Amodio, P, Budd, C J, Koch, O, Rottschäfer, V, Settanni, G & Weinmüller, E 2020, ' Near critical, self-similar, blow-up solutions of the generalised Korteweg–de Vries equation : Asymptotics and computations ', Physica D: Nonlinear Phenomena, vol. 401, 132179 . https://doi.org/10.1016/j.physd.2019.132179
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

In this article we give a detailed asymptotic analysis of the near critical self-similar blowup solutions to the Generalised Korteweg–de Vries equation (GKdV). We compare this analysis to some careful numerical calculations. It has been known that for a nonlinearity that has a power larger than the critical value p = 5 , solitary waves of the GKdV can become unstable and become infinite in finite time, in other words they blow up. Numerical simulations presented in Klein and Peter (2015) indicate that if p > 5 the solitary waves travel to the right with an increasing speed, and simultaneously, form a similarity structure as they approach the blow-up time. This structure breaks down at p = 5 . Based on these observations, we rescale the GKdV equation to give an equation that will be analysed by using asymptotic methods as p → 5 + . By doing this we resolve the complete structure of these self-similar blow-up solutions and study the singular nature of the solutions in the critical limit. In both the numerics and the asymptotics, we find that the solution has sech-like behaviour near the peak. Moreover, it becomes asymmetric with slow algebraic decay to the left of the peak and much more rapid algebraic decay to the right. The asymptotic expressions agree to high accuracy with the numerical results, performed by adaptive high-order solvers based on collocation or finite difference methods.

Details

ISSN :
01672789
Volume :
401
Database :
OpenAIRE
Journal :
Physica D: Nonlinear Phenomena
Accession number :
edsair.doi.dedup.....4ca3a097a021718c9240ae5e24be055c