Back to Search
Start Over
Evaluating Representation Learning and Graph Layout Methods for Visualization
- Source :
- IEEE COMPUTER GRAPHICS AND APPLICATIONS
- Publication Year :
- 2022
-
Abstract
- Graphs and other structured data have come to the forefront in machine learning over the past few years due to the efficacy of novel representation learning methods boosting the prediction performance in various tasks. Representation learning methods embed the nodes in a low-dimensional real-valued space, enabling the application of traditional machine learning methods on graphs. These representations have been widely premised to be also suited for graph visualization. However, no benchmarks or encompassing studies on this topic exist. We present an empirical study comparing several state-of-the-art representation learning methods with two recent graph layout algorithms, using readability and distance-based measures as well as the link prediction performance. Generally, no method consistently outperformed the others across quality measures. The graph layout methods provided qualitatively superior layouts when compared to representation learning methods. Embedding graphs in a higher dimensional space and applying t-distributed stochastic neighbor embedding for visualization improved the preservation of local neighborhoods, albeit at substantially higher computational cost.
- Subjects :
- Benchmark testing
Technology and Engineering
Layout
network embedding
Machine learning algorithms
Empirical Research
Computer Graphics and Computer-Aided Design
t-SNE
Representation learning
Boosting
Computational efficiency
Machine Learning
Benchmarking
Research Design
graph visualization
Prediction algorithms
Software
Algorithms
dimensionality reduction
Subjects
Details
- ISSN :
- 15581756 and 02721716
- Volume :
- 42
- Issue :
- 3
- Database :
- OpenAIRE
- Journal :
- IEEE computer graphics and applications
- Accession number :
- edsair.doi.dedup.....4c79b003b393f6beaad8d9fa5ab6e54c