Back to Search Start Over

Genetic Programming for Attribute Construction in Data Mining

Authors :
Fernando E. B. Otero
Monique M. S. Silva
Alex A. Freitas
Julio Cesar Nievola
Ryan, Conor
Keijzer, Maarten
Poli, Riccardo
Soule, Terence
Tsang, Edward
Costa, Ernesto
Source :
Lecture Notes in Computer Science ISBN: 9783540009719, GECCO Late Breaking Papers
Publication Year :
2003
Publisher :
Springer, 2003.

Abstract

For a given data set, its set of attributes defines its data space representation. The quality of a data space representation is one of the most important factors influencing the performance of a data mining algorithm. The attributes defining the data space can be inadequate, making it difficult to discover high-quality knowledge. In order to solve this problem, this paper proposes a Genetic Programming algorithm developed for attribute construction. This algorithm constructs new attributes out of the original attributes of the data set, performing an important preprocessing step for the subsequent application of a data mining algorithm.

Details

Language :
English
ISBN :
978-3-540-00971-9
ISSN :
03029743
ISBNs :
9783540009719
Database :
OpenAIRE
Journal :
Lecture Notes in Computer Science ISBN: 9783540009719, GECCO Late Breaking Papers
Accession number :
edsair.doi.dedup.....4c79511b419d9d1b7efe74bd461fe9a6