Back to Search Start Over

Holocene water mass changes in the Labrador Current

Authors :
Markus Kienast
Janne Repschläger
Annalena Antonia Lochte
Ralph R Schneider
Thomas Blanz
Marit-Solveig Seidenkrantz
Source :
Lochte, A A, Repschlaeger, J, Seidenkrantz, M-S, Kienast, M, Blanz, T & Schneider, R R 2019, ' Holocene water mass changes in the Labrador Current ', Holocene, vol. 29, no. 4, pp. 676-690 . https://doi.org/10.1177/0959683618824752, The Holocene, 29 (4). pp. 676-690., Lochte, A A, Repschläger, J, Seidenkrantz, M S, Kienast, M, Blanz, T & Schneider, R R 2019, ' Holocene water mass changes in the Labrador Current ' Holocene . https://doi.org/10.1177/0959683618824752
Publication Year :
2019
Publisher :
SAGE Publications, 2019.

Abstract

The Labrador Current is part of the anticlockwise subpolar gyre and plays a major role in the formation of North Atlantic Deep Water. It is influenced by the West Greenland and Baffin currents supplying warmer Atlantic and cold polar waters, respectively. During the early Holocene, at the final stage of the last deglaciation, meltwater and iceberg discharge caused highly variable conditions in the Labrador Current. In order to assess its sensitivity to such freshening, this study provides a well-resolved Holocene paleoclimatic record from the Labrador Shelf. Based on benthic foraminiferal faunal and alkenone biomarker analyses, we differentiated four distinct climatic periods in the western Labrador Sea. From 8.9 to 8.6 ka BP, the Labrador Shelf was dominated by polar water outflow from Baffin Bay and covered by perennial sea ice. Between 8.6 and 7.4 ka BP, a strong subsurface inflow of warmer Atlantic water masses is ascribed to an intensification and redirection of the West Greenland Current. At 7.4 ka BP, the decreased influence of Atlantic water masses on the Labrador Shelf marks the establishment of winter convection leading to the formation of Labrador Sea Water in the central basin. Concurrently, an intensified polar water outflow through the Canadian Gateways strengthened the inner Labrador Current, and higher primary productivity suggests longer spring blooms because of a shorter sea-ice season during the Holocene Thermal Maximum. In the late Holocene after 3 ka BP, periodic fluctuations of primary productivity may tentatively be correlated with stronger and weaker northwesterly winds.

Details

ISSN :
14770911 and 09596836
Volume :
29
Database :
OpenAIRE
Journal :
The Holocene
Accession number :
edsair.doi.dedup.....4c5999e69a703246b9227b33df1a3577