Back to Search Start Over

Myosin IIA suppresses glioblastoma development in a mechanically sensitive manner

Authors :
Amanda Luu
David J. Odde
Vandana Rai
Rita West
Katarzyna Pogoda
Rajappa S. Kenchappa
Athanassios Dovas
Steven S. Rosenfeld
Paul A. Janmey
Thomas T. Egelhoff
Peter Canoll
Unnikrishnan M. Chandrasekharan
James F. Crish
Jan Lammerding
Hannah S. Picariello
Emily Bell
Mariah McMahon
Source :
Proceedings of the National Academy of Sciences. 116:15550-15559
Publication Year :
2019
Publisher :
Proceedings of the National Academy of Sciences, 2019.

Abstract

The ability of glioblastoma to disperse through the brain contributes to its lethality, and blocking this behavior has been an appealing therapeutic approach. Although a number of proinvasive signaling pathways are active in glioblastoma, many are redundant, so targeting one can be overcome by activating another. However, these pathways converge on nonredundant components of the cytoskeleton, and we have shown that inhibiting one of these—the myosin II family of cytoskeletal motors—blocks glioblastoma invasion even with simultaneous activation of multiple upstream promigratory pathways. Myosin IIA and IIB are the most prevalent isoforms of myosin II in glioblastoma, and we now show that codeleting these myosins markedly impairs tumorigenesis and significantly prolongs survival in a rodent model of this disease. However, while targeting just myosin IIA also impairs tumor invasion, it surprisingly increases tumor proliferation in a manner that depends on environmental mechanics. On soft surfaces myosin IIA deletion enhances ERK1/2 activity, while on stiff surfaces it enhances the activity of NFκB, not only in glioblastoma but in triple-negative breast carcinoma and normal keratinocytes as well. We conclude myosin IIA suppresses tumorigenesis in at least two ways that are modulated by the mechanics of the tumor and its stroma. Our results also suggest that inhibiting tumor invasion can enhance tumor proliferation and that effective therapy requires targeting cellular components that drive both proliferation and invasion simultaneously.

Details

ISSN :
10916490 and 00278424
Volume :
116
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....4c35f9d710596cc5a599663008b36c53