Back to Search Start Over

Modeling Immiscible Two‐Phase Flow in Rough Fractures From Capillary to Viscous Fingering

Authors :
Yi-Feng Chen
Insa Neuweiler
Zhibing Yang
Yves Méheust
Auli Niemi
Ran Hu
State Key Laboratory of Water Resources and Hydropower Engineering Science
Wuhan University [China]
Géosciences Rennes (GR)
Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)
Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS)
Institute of Fluid Mechanics and Environmental Physics in Civil, Engineering
Leibniz Universität Hannover=Leibniz University Hannover
Department of Earth Sciences [Uppsala]
Uppsala University
51779188, National Natural Science Foundation of China
Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Centre National de la Recherche Scientifique (CNRS)
Leibniz Universität Hannover [Hannover] (LUH)
Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)
Source :
Water Resources Research, Water Resources Research, 2019, 55 (3), pp.2033-2056. ⟨10.1029/2018WR024045⟩, Water Resources Research, American Geophysical Union, 2019, 55 (3), pp.2033-2056. ⟨10.1029/2018WR024045⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; We develop an efficient computational model for simulating fluid invasion patterns emerging in variable aperture fractures. This two-dimensional model takes into account the effect of capillary force on the fluid-fluid interfaces and viscous pressure drop in both fluid phases. The pressure distribution is solved at each time step based on mass balance and local cubic law, considering an imposed pressure jump condition at the fluid-fluid interface. This pressure jump corresponds to the Laplace pressure which includes both terms related to the out-of-plane (aperture-spanning) curvature and to the in-plane curvature. Simulating a configuration that emulates viscous fingering in two-dimensional random porous media confirms that the model accounts properly for the role of viscous forces. Furthermore, direct comparison with previously obtained experimental results shows that the model reproduces the observed drainage patterns in a rough fracture reasonably well. The evolutions of tip location, the inlet pressures, and the invading phase fractal dimensions are analyzed to characterize the transition from capillary fingering to viscous fingering regimes. A radial injection scenario of immiscible invasion is also studied with varying modified capillary number and viscosity ratio, showing displacement patterns ranging from capillary fingering to viscous fingering to stable displacement. Such simulations using two contact angles show that the invading phase becomes more compact when the wetting condition changes from strong to weak drainage, as already observed in 2-D porous media. The model can be used to bridge the gap in spatial scales of two-phase flow between pore-scale modeling approaches and the continuum Darcy-scale models.

Details

Language :
English
ISSN :
00431397 and 19447973
Database :
OpenAIRE
Journal :
Water Resources Research, Water Resources Research, 2019, 55 (3), pp.2033-2056. ⟨10.1029/2018WR024045⟩, Water Resources Research, American Geophysical Union, 2019, 55 (3), pp.2033-2056. ⟨10.1029/2018WR024045⟩
Accession number :
edsair.doi.dedup.....4c04042578a120d1074adfd71f6fe89c