Back to Search Start Over

Secretory galectin-3 induced by glucocorticoid stress triggers stemness exhaustion of hepatic progenitor cells

Authors :
Fan Yang
Zhijun Bao
Huiyuan Yu
Xueying Ji
Xiaona Hu
Xin Jiang
Fan Zhang
Mengjuan Xue
Source :
The Journal of Biological Chemistry
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

Adult progenitor cell populations typically exist in a quiescent state within a controlled niche environment. However, various stresses or forms of damage can disrupt this state, which often leads to dysfunction and aging. We built a glucocorticoid (GC)-induced liver damage model of mice, found that GC stress induced liver damage, leading to consequences for progenitor cells expansion. However, the mechanisms by which niche factors cause progenitor cells proliferation are largely unknown. We demonstrate that, within the liver progenitor cells niche, Galectin-3 (Gal-3) is responsible for driving a subset of progenitor cells to break quiescence. We show that GC stress causes aging of the niche, which induces the up-regulation of Gal-3. The increased Gal-3 population increasingly interacts with the progenitor cell marker CD133, which triggers focal adhesion kinase (FAK)/AMP-activated kinase (AMPK) signaling. This results in the loss of quiescence and leads to the eventual stemness exhaustion of progenitor cells. Conversely, blocking Gal-3 with the inhibitor TD139 prevents the loss of stemness and improves liver function. These experiments identify a stress-dependent change in progenitor cell niche that directly influence liver progenitor cell quiescence and function.

Details

ISSN :
00219258
Volume :
295
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi.dedup.....4c026faa9ce2e19d3ec8c3af2714c70e